
SIGMA-PRIKRY FORCING III:

DOWN TO ℵ𝜔

ALEJANDRO POVEDA, ASSAF RINOT, AND DIMA SINAPOVA

Abstract. We prove the consistency of the failure of the singular car-
dinals hypothesis at ℵ𝜔 together with the reflection of all stationary
subsets of ℵ𝜔+1. This shows that two classic results of Magidor (from
1977 and 1982) can hold simultaneously.

1. Introduction

Many natural questions cannot be resolved by the standard mathematical
axioms (ZFC); the most famous example being Hilbert’s first problem, the
continuum hypothesis (CH). At the late 1930’s, Gödel constructed an inner
model of set theory [Göd40] in which the generalized continuum hypothesis
(GCH) holds, demonstrating, in particular, that CH is consistent with ZFC.
Then, in 1963, Cohen invented the method of forcing [Coh63] and used it to
prove that ¬CH is, as well, consistent with ZFC.

In an advance made by Easton [Eas70], it was shown that any reasonable
behavior of the continuum function 𝜅 ↦→ 2𝜅 for regular cardinals 𝜅 may be
materialized. In a review on Easton’s paper for AMS Mathematical Reviews,
Azriel Lévy writes:

The corresponding question concerning the singular ℵ𝛼’s is
still open, and seems to be one of the most difficult open
problems of set theory in the post-Cohen era. It is, e.g.,
unknown whether for all 𝑛(𝑛 < 𝜔 → 2ℵ𝑛 = ℵ.𝑛+1) implies

2ℵ𝜔 = ℵ𝜔+1 or not.

A preliminary finding of Bukovský [Buk65] (and independently Hechler)
suggested that singular cardinals may indeed behave differently, but it was
only around 1975, with Silver’s theorem [Sil75] and the pioneering work
of Galvin and Hajnal [GH75], that it became clear that singular cardinals
obey much deeper constraints. This lead to the formulation of the singular
cardinals hypothesis (SCH) as a (correct) relativization of GCH to singular
cardinals, and ultimately to Shelah’s pcf theory [She92, She00]. Shortly
after Silver’s discovery, advances in inner model theory due to Jensen (see
[DJ75]) provided a covering lemma between Gödel’s original model of GCH
and many other models of set theory, thus establishing that any consistent
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failure of SCH must rely on an extension of ZFC involving large cardinals
axioms.

Compactness is the phenomenon where if a certain property holds for ev-
ery strictly smaller substructure of a given object, then it holds for the object
itself. Countless results in topology, graph theory, algebra and logic demon-
strate that the first infinite cardinal is compact. Large cardinals axioms are
compactness postulates for the higher infinite.

A crucial tool for connecting large cardinals axioms with singular cardinals
was introduced by Prikry in [Pri70]. Then Silver (see [Men76]) constructed
a model of ZFC whose extension by Prikry’s forcing gave the first universe
of set theory with a singular strong limit cardinal 𝜅 such that 2𝜅 > 𝜅+.
Shortly after, Magidor [Mag77a] proved that the same may be achieved at
level of the very first singular cardinal, that is, 𝜅 = ℵ𝜔. Finally, in 1977,
Magidor answered the question from Lévy’s review in the affirmative:

Theorem 1 (Magidor, [Mag77b]). Assuming the consistency of a supercom-
pact cardinal and a huge cardinal above it, it is consistent that 2ℵ𝑛 = ℵ𝑛+1

for all 𝑛 < 𝜔, and 2ℵ𝜔 = ℵ𝜔+2.

Later works of Gitik, Mitchell, and Woodin pinpointed the optimal large
cardinal hypothesis required for Magidor’s theorem (see [Git02, Mit10]).

Note that Theorem 1 is an incompactness result; the values of the power-
set function are small below ℵ𝜔, and blow up at ℵ𝜔. In a paper from 1982,
Magidor obtained a result of an opposite nature, asserting that stationary
reflection — one of the most canonical forms of compactness — may hold
at the level of the successor of the first singular cardinal:

Theorem 2 (Magidor, [Mag82]). Assuming the consistency of infinitely
many supercompact cardinals, it is consistent that every stationary subset of
ℵ𝜔+1 reflects.1

Ever since, it remained open whether Magidor’s compactness and incom-
pactness results may co-exist.

The main tool for obtaining Theorem 1 (and the failures of SCH, in gen-
eral) is Prikry-type forcing (see Gitik’s survey [Git10]), however, adding
Prikry sequences at a cardinal 𝜅 typically implies the failure of reflection at
𝜅+. On the other hand, Magidor’s proof of Theorem 2 goes through Lévy-
collapsing 𝜔-many supercompact cardinals to become the ℵ𝑛’s, and in any
such model SCH would naturally hold at the supremum, ℵ𝜔.

Various partial progress to combine the two results was made along the
way. Cummings, Foreman and Magidor [CFM01] investigated which sets
can reflect in the classical Prikry generic extension. In his 2005 disserta-
tion [Sha05], Sharon analyzed reflection properties of extender-based Prikry
forcing (EBPF, due to Gitik and Magidor [GM94]) and devised a way to

1That is, for every subset 𝑆 ⊆ ℵ𝜔+1, if for every ordinal 𝛼 < ℵ𝜔+1 (of uncountable
cofinality), there exists a closed and unbounded subset of 𝛼 disjoint from 𝑆, then there
exists a closed and unbounded subset of ℵ𝜔+1 disjoint from 𝑆.
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kill one non-reflecting stationary set, again in a Prikry-type fashion. He
then described an iteration to kill all non-reflecting stationary sets, but the
exposition was incomplete.

In the other direction, works of Solovay [Sol74], Foreman, Magidor and
Shelah [FMS88], Veličković [Vel92], Todorčević [Tod93], Foreman and Todorčević
[FT05], Moore [Moo06], Viale [Via06], Rinot [Rin08], Shelah [She08], Fuchino
and Rinot [FR11], and Sakai [Sak15] add up to a long list of compactness
principles that are sufficient to imply the SCH.

In [PRS19], we introduced a new class of Prikry-type forcing called Σ-
Prikry and showed that many of the standard Prikry-type forcing for vi-
olating SCH at the level of a singular cardinal of countable cofinality fits
into this class. In addition, we verified that Sharon’s forcing for killing a
single non-reflecting stationary set fits into this class. Then, in [PRS20],
we devised a general iteration scheme for Σ-Prikry forcing. From this, we
constructed a model of the failure of SCH at 𝜅 with stationary reflection at
𝜅+; we first violate the SCH using EBPF and then carry out an iteration of
length 𝜅++ of the Σ-Prikry posets to kill all non-reflecting stationary subsets
of 𝜅+.

Independently, and around the same time, Ben-Neria, Hayut and Unger
[OHU19] also obtained the consistency of the failure of SCH at 𝜅 with sta-
tionary reflection at 𝜅+. Their proof differs from ours in quite a few aspects;
we mention just two of them. First, instead of EBPF, they violate SCH by
using Gitik’s very recent forcing [Git19a] which is also applicable to cardinals
of uncountable cofinality. Second, they cleverly avoid the need to carry out
iterated forcing, by invoking iterated ultrapowers, instead. An even simpler
proof was then given by Gitik in [Git19c].

Still, in all of the above, the constructions are for a singular cardinal 𝜅
that is very high up; more precisely, 𝜅 is a limit of inaccessible cardinals.
Obtaining a similar construction for 𝜅 = ℵ𝜔 is quite more difficult, as it
involves interleaving collapses. This makes key parts of the forcing no longer
closed, and closure is an essential tool to make use of the indestructibility
of the supercompact cardinals when proving reflection.

In this paper, we extend the machinery developed in [PRS19, PRS20] to
support interleaved collapses, and show that this new framework captures
Gitik’s EBPF with interleaved collapses [Git19b]. The new class is called

(Σ, S⃗)-Prikry. Finally, by running our iteration of (Σ, S⃗)-Prikry forcings
over a suitable ground model, we establish that Magidor’s compactness and
incompactness results can indeed co-exist:

Main Theorem. Assuming the consistency of infinitely many supercompact
cardinals, it is consistent that all of the following hold:

(1) 2ℵ𝑛 = ℵ𝑛+1 for all 𝑛 < 𝜔;
(2) 2ℵ𝜔 = ℵ𝜔+2;
(3) every stationary subset of ℵ𝜔+1 reflects.
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1.1. Organization of this paper. In Section 2, we introduce the concepts
of nice projection and suitability for reflection.

In Section 3, we introduce the class of (Σ, S⃗)-Prikry forcing and prove
some of their main properties.

In Section 4, we prove that Gitik’s Extender Based Prikry Forcing with

Collapses (EBPFC) fits into the (Σ, S⃗)-Prikry framework. Here we also
analyze the preservation of cardinals in the corresponding generic extension
and show that EBPFC is suitable for reflection.

In Section 5, we introduce the notion of nice forking projection, a strength-
ening of the concept of forking projection from Part I of this series. We show

that a graded poset admitting an exact forking projection to a (Σ, S⃗)-Prikry

poset is not far from being (Σ, S⃗)-Prikry on its own. The section concludes
with a sufficient condition for exact forking projections to preserve suitabil-
ity for reflection.

In Section 6, we revisit the functor A(·, ·) from Part II of this series,
improving the main result of [PRS20, S4]. Specifically, we prove that, for

every (Σ, S⃗)-Prikry forcing P and every P-name �̇� for a fragile stationary

set, the said functor produces a (Σ, S⃗)-Prikry forcing A(P, �̇� ) admitting a

nice forking projection to P and killing the stationarity of �̇� .
In Section 7, we improve one of the main result from Part II of this series,

showing that, modulo necessary variations, the very same iteration scheme

from [PRS20, S3] is also adequate for (Σ, S⃗)-Prikry forcings.
In Section 8, we present the primary application of our framework. The

proof of the Main Theorem may be found there.

1.2. Notation and conventions. Our forcing convention is that 𝑝 ≤ 𝑞
means that 𝑝 extends 𝑞. We write P ↓ 𝑞 for {𝑝 ∈ P | 𝑝 ≤ 𝑞}. Denote
𝐸𝜇𝜃 := {𝛼 < 𝜇 | cf(𝛼) = 𝜃}. The sets 𝐸𝜇<𝜃 and 𝐸𝜇>𝜃 are defined in a similar
fashion. For a stationary subset 𝑆 of a regular uncountable cardinal 𝜇,
we write Tr(𝑆) := {𝛿 ∈ 𝐸𝜇>𝜔 | 𝑆 ∩ 𝛿 is stationary in 𝛿}. 𝐻𝜈 denotes the
collection of all sets of hereditary cardinality less than 𝜈. For every set of
ordinals 𝑥, we denote cl(𝑥) := {sup(𝑥 ∩ 𝛾) | 𝛾 ∈ Ord, 𝑥 ∩ 𝛾 ̸= ∅}, and
acc(𝑥) := {𝛾 ∈ 𝑥 | sup(𝑥 ∩ 𝛾) = 𝛾 > 0}. We write CH𝜇 to denote 2𝜇 = 𝜇+

and GCH<𝜈 as a shorthand for CH𝜇 holds for every infinite cardinal 𝜇 < 𝜈.
For a sequence of maps �⃗� = ⟨𝜛𝑛 | 𝑛 < 𝜔⟩ and yet a another map 𝜋 such

that Im(𝜋) ⊆
⋂︀
𝑛<𝜔 dom(𝜛𝑛), we let �⃗� ∙ 𝜋 denote ⟨𝜛𝑛 ∘ 𝜋 | 𝑛 < 𝜔⟩.

2. Nice projections and reflection

Definition 2.1. Given a poset P = (𝑃,≤) with greatest element 1l and a
map 𝜛 with dom(𝜛) ⊇ 𝑃 , we derive a poset P𝜛 := (𝑃,≤𝜛) by letting

𝑝 ≤𝜛 𝑞 iff (𝑝 = 1l or (𝑝 ≤ 𝑞 and 𝜛(𝑝) = 𝜛(𝑞))).

Definition 2.2. For two notions of forcing P = (𝑃,≤) and S = (𝑆,⪯) with
maximal elements 1lP and 1lS, respectively, we say that a map 𝜛 : 𝑃 → 𝑆 is
a nice projection from P to S iff all of the following hold:
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(1) 𝜛(1lP) = 1lS;
(2) for any pair 𝑞 ≤ 𝑝 of elements of 𝑃 , 𝜛(𝑞) ⪯ 𝜛(𝑝);
(3) for all 𝑝 ∈ 𝑃 and 𝑠 ⪯ 𝜛(𝑝), the set {𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝 ∧ 𝜛(𝑞) ⪯ 𝑠}

admits a ≤-greatest element, which we denote by 𝑝 + 𝑠. Moreover,
𝑝+ 𝑠 has the additionally property that 𝜛(𝑝+ 𝑠) = 𝑠;2

(4) for every 𝑞 ≤ 𝑝 + 𝑠, there is 𝑝′ ≤𝜛 𝑝 such that 𝑞 = 𝑝′ + 𝜛(𝑞);
In particular, the map (𝑝′, 𝑠′) ↦→ 𝑝′ + 𝑠′ forms a projection from
(P𝜛 ↓ 𝑝) × (S ↓ 𝑠) onto P ↓ 𝑝.

Example 2.3. If P is a product of the form S×T, then the map (𝑠, 𝑡) ↦→ 𝑠
forms an nice projection from P to S.

Note that the composition of nice projections is again a nice projection.

Definition 2.4. Let P = (𝑃,≤) and S = (𝑆,⪯) be two notions of forcing
and 𝜛 : 𝑃 → 𝑆 be a nice projection. For an S-generic filter 𝐻, we define
the quotient forcing P/𝐻 := (𝑃/𝐻,≤P/𝐻) as follows:

∙ 𝑃/𝐻 := {𝑝 ∈ 𝑃 | 𝜛(𝑝) ∈ 𝐻};
∙ for all 𝑝, 𝑞 ∈ 𝑃/𝐻, 𝑞 ≤P/𝐻 𝑝 iff there is 𝑠 ∈ 𝐻 with 𝑠 ⪯ 𝜛(𝑞) such

that 𝑞 + 𝑠 ≤ 𝑝.

Remark 2.5. In a slight abuse of notation, we tend to write P/S when refer-
ring to a quotient as above, without specifying the generic for S or the map
𝜛. By standard arguments, P is isomorphic to a dense subposet of S * P/S
(see [Abr10, p. 337]).

Lemma 2.6. Suppose that 𝜛 : P → S is a nice projection. Let 𝑝 ∈ 𝑃 and
set 𝑠 := 𝜛(𝑝). For any condition 𝑎 ∈ S ↓ 𝑠, define an ordering ≤𝑎 over
P𝜛 ↓ 𝑝 by letting 𝑝0 ≤𝑎 𝑝1 iff 𝑝0 + 𝑎 ≤ 𝑝1 + 𝑎.3 Then:

(1) (S ↓ 𝑎) × ((P𝜛 ↓ 𝑝),≤𝑎) projects to P ↓ (𝑝+ 𝑎), and
(2) ((P𝜛 ↓ 𝑝),≤𝑎) projects to ((P𝜛 ↓ 𝑝),≤𝑎′) for all 𝑎′ ⪯ 𝑎.4

(3) If P𝜛 contains a 𝛿-closed dense set, then so does ((P𝜛 ↓ 𝑝),≤𝑎).

Proof. Note that for 𝑝0, 𝑝1 in P𝜛 ↓ 𝑝:
∙ 𝑝0 ≤𝑠 𝑝1 iff 𝑝0 ≤𝜛 𝑝1, and so (P𝜛 ↓ 𝑝,≤𝑠) is simply P𝜛 ↓ 𝑝;
∙ if 𝑝0 ≤𝑎 𝑝1, then 𝑝0 ≤𝑎′ 𝑝1 for any 𝑎′ ⪯ 𝑎;
∙ in particular, if 𝑝0 ≤𝜛 𝑝1, then 𝑝0 ≤𝑎 𝑝1 for any 𝑎 in S ↓ 𝑠.

The first projection is given by (𝑎′, 𝑟) ↦→ 𝑟+𝑎′, and the second projection
is given by the identity.

For the last statement, denote P𝑎 := ((P𝜛 ↓ 𝑝),≤𝑎) and let 𝐷 be a 𝛿-
closed dense subset of P𝜛. We claim that 𝐷𝑎 := {𝑟 ∈ P𝜛 ↓ 𝑝 | 𝑟+ 𝑎 ∈ 𝐷} is
a 𝛿-closed dense subset of P𝑎. For the density, if 𝑟 ∈ P𝜛 ↓ 𝑝, let 𝑞 ≤𝜛 𝑟+𝑎 be
in 𝐷. Then, by Clause (4) of Definition 2.2, 𝑞 = 𝑟′ +𝑎 for some 𝑟′ ≤𝜛 𝑟, and

2By convention, a greatest element, if exists, is unique.
3Strictly speaking, ≤𝑎 is reflexive and transitive, but not asymmetric. But this is also

always the case, for instance, in iterated forcing.
4Taking 𝑎 = 𝑠 we have in particular that P𝜛 ↓ 𝑝 projects to ((P𝜛 ↓ 𝑝),≤𝑎′).
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so 𝑟′ ≤𝑎 𝑟 and 𝑟′ ∈ 𝐷𝑎. For the closure, suppose that ⟨𝑝𝑖 | 𝑖 < 𝜏⟩ is a ≤P𝑎-
decreasing sequence in 𝐷𝑎 for some 𝜏 < 𝛿. Setting 𝑞𝑖 := 𝑝𝑖 + 𝑎, that means
that ⟨𝑞𝑖 | 𝑖 < 𝜏⟩ is a ≤𝜛-decreasing sequence in 𝐷 and so has a lower bound
𝑞. More precisely, 𝑞 ∈ 𝐷 and for each 𝑖, 𝑞 ≤ 𝑞𝑖 and 𝜛(𝑞) = 𝜛(𝑞𝑖) = 𝑎.
Let 𝑝* ≤𝜛 𝑝, be such that 𝑝* + 𝑎 = 𝑞. Here again we use Clause (4) of
Definition 2.2. Then 𝑝* ∈ 𝐷𝑎, which is the desired ≤P𝑎-lower bound. �

The next lemma clarifies the relationship between the different generic
extensions that we will be considering:

Lemma 2.7. Suppose that 𝜛 : P → S, 𝑝 ∈ 𝑃 , 𝑠 := 𝜛(𝑝) and ≤𝑎 for 𝑎 in
S ↓ 𝑠 are as in the above lemma. Let 𝐺 be P-generic with 𝑝 ∈ 𝐺.

Next, let 𝐻 ×𝐺* be ((S ↓ 𝑠) × (P𝜛 ↓ 𝑝))/𝐺-generic over 𝑉 [𝐺]. For each
𝑎 ∈ 𝐻, let 𝐺𝑎 be the ((P𝜛 ↓ 𝑝),≤𝑎)-generic filter obtained from 𝐺*. Then:

(1) For any 𝑎 ∈ 𝐻, 𝑉 [𝐺] ⊆ 𝑉 [𝐻×𝐺𝑎] ⊆ 𝑉 [𝐻×𝐺*], and 𝐺 ⊇ 𝐺𝑎 ⊇ 𝐺*;
(2) For any pair 𝑎′ ⪯ 𝑎 of elements of 𝐻, 𝑉 [𝐻×𝐺𝑎′ ] ⊆ 𝑉 [𝐻×𝐺𝑎], and

𝐺𝑎′ ⊇ 𝐺𝑎;
(3) 𝐺 ∩ (P𝜛 ↓ 𝑝) =

⋃︀
𝑎∈𝐻 𝐺𝑎.

Proof. For notational convenience, denote P* := P𝜛 ↓ 𝑝 and S* := S ↓ 𝑠.
The first two items follow from the corresponding choices of the projec-

tions in Lemma 2.6. For the third item, first note that
⋃︀
𝑎∈𝐻 𝐺𝑎 ⊆ P* ∩𝐺.

Suppose that 𝑟* ∈ 𝐺 ∩ P*. In 𝑉 [𝐻], define

𝐷 := {𝑟 ∈ 𝑃 * | (∃𝑎 ∈ 𝐻)(𝑟 ≤𝑎 𝑟
*) ∨ 𝑟 ⊥P/𝐻 𝑟*}.5

Claim 2.7.1. 𝐷 is a dense set in P*.

Proof. Let 𝑟 ∈ 𝑃 *. If 𝑟 ⊥P/𝐻 𝑟*, then 𝑟 ∈ 𝐷, and so we are done. So
suppose that 𝑟 and 𝑟* are compatible in P/𝐻. Let 𝑞 ∈ 𝑃/𝐻 be such that,
𝑞 ≤P/𝐻 𝑟 and 𝑞 ≤P/𝐻 𝑟*. Let 𝑎 ⪯ 𝜛(𝑞) in 𝐻 be such that 𝑞 + 𝑎 ≤ 𝑟, 𝑟′.
By Definition 2.2(4) and exactness of 𝜛 we may let 𝑟′ ≤𝜛 𝑟, be such that
𝑟′ + 𝑎 = 𝑞 + 𝑎. In particular, 𝑟′ ≤𝑎 𝑟

*, and so 𝑟′ ∈ 𝐷. �

Now let 𝑟 ∈ 𝐷 ∩ 𝐺*. Since both 𝑟, 𝑟* ∈ 𝐺, it must be that 𝑟 ≤𝑎 𝑟
* for

some 𝑎 ∈ 𝐻. And since 𝑟 ∈ 𝐺* ⊆ 𝐺𝑎, we get that 𝑟* ∈ 𝐺𝑎. �

Lemma 2.8. Suppose that 𝜛 : P → S is an exact nice projection and that
𝛿 < 𝜅 are infinite regular cardinals for which the following hold:

(1) |S| < 𝛿 and P𝜛 contains a 𝛿-directed-closed dense subset;
(2) After forcing with S× P𝜛, 𝛿 and 𝜅 remain regular;
(3) 𝐸𝜅<𝛿 is the same as computed in 𝑉 and in 𝑉 P

𝜛
and 𝑉 P |= “𝐸𝜅<𝛿 ∈ 𝐼[𝜅]”.6

Let 𝑝 ∈ P and set 𝑠 := 𝜛(𝑝). Then, for any P-generic 𝐺 with 𝑝 ∈ 𝐺, the

quotient ((S ↓ 𝑠) × (P𝜛 ↓ 𝑝))/𝐺 preserves stationary subsets of (𝐸𝜅<𝛿)
𝑉 [𝐺].

5Since 𝑟 ∈ 𝑃 * then 𝜛(𝑟) = 𝜛(𝑝) ∈ 𝐻 and thus 𝑟 is a condition in P/𝐻.
6For the definition of the ideal 𝐼[𝜅] see [She94, Definition 2.3].
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Proof. For the scope of the proof denote P* := P𝜛 ↓ 𝑝 and S* := S ↓ 𝑠.
Let 𝐻 ×𝐺* be (S*×P*)/𝐺-generic over 𝑉 [𝐺]. For each 𝑎 ∈ 𝐻, let 𝐺𝑎 be

the ((P𝜛 ↓ 𝑝),≤𝑎)-generic, obtained from 𝐺*. For notational convenience
we will also denote P𝑎 := ((P𝜛 ↓ 𝑝),≤𝑎). Combining Clause (1) of our
assumptions with Lemma 2.6 we have that P𝑎 contains a 𝛿-closed dense
subset, hence it is 𝛿-strategically-closed. Standard arguments imply that
P*/𝐺𝑎 is 𝛿-strategically-closed over 𝑉 [𝐺𝑎].

7

Suppose for contradiction that 𝑉 [𝐺] |= “𝑇 ⊆ 𝐸𝜅<𝛿 is a stationary set”,
but that 𝑇 is nonstationary in 𝑉 [𝐻 ×𝐺*]. Since |S| < 𝛿, Clause (3) above

and Lemma 2.7(1) yield (𝐸𝜅<𝛿)
𝑉 = (𝐸𝜅<𝛿)

𝑉 [𝐺*] = (𝐸𝜅<𝛿)
𝑉 [𝐺] = (𝐸𝜅<𝛿)

𝑉 [𝐺𝑎] for
all 𝑎 ∈ 𝐻. Thus, we can unambiguously denote this set by 𝐸𝜅<𝛿.

Claim 2.8.1. Let 𝑎 ∈ 𝐻. Then, 𝑇 is non-stationary in 𝑉 [𝐻 ×𝐺𝑎].

Proof. Otherwise, if 𝑇 was stationary in 𝑉 [𝐻][𝐺𝑎], then since |S| < 𝜅,

𝑇 ′ := {𝛼 ∈ 𝐸𝜅<𝛿 | (∃𝑟 ∈ 𝐺𝑎)(𝑏, 𝑟) S*×P𝑎 𝛼 ∈ �̇�}
is a stationary set lying in 𝑉 [𝐺𝑎], where 𝑏 ∈ 𝐻. Combining Lemma 2.7(1)

with the fact that S is small we have 𝐼[𝜅]𝑉 [𝐺] ⊆ 𝐼[𝜅]𝑉 [𝐻×𝐺𝑎] ⊆ 𝐼[𝜅]𝑉 [𝐺𝑎].

Thus, Clause (3) of our assumption yields 𝐸𝜅<𝛿 ∈ 𝐼[𝜅]𝑉 [𝐺𝑎]. Now, since
P*/𝐺𝑎 is 𝛿-strategically closed in 𝑉 [𝐺𝑎], by Shelah’s theorem [She79], P*/𝐺𝑎
preserves stationary subsets of 𝐸𝜅<𝛿 hence 𝑇 ′ remains stationary in 𝑉 [𝐺*].
Once again, since S is a small forcing 𝑇 ′ remains stationary in the further
generic extension 𝑉 [𝐻 × 𝐺*]. This is a contradiction with 𝑇 ′ ⊆ 𝑇 and our
assumption that 𝑇 was non-stationary in 𝑉 [𝐻 ×𝐺*]. �

Then for every 𝑎 ∈ 𝐻, let 𝐶𝑎 be a club in 𝑉 [𝐻 × 𝐺𝑎], disjoint from 𝑇 .

Since S is a small forcing, we may assume that 𝐶𝑎 ∈ 𝑉 [𝐺𝑎]. Let �̇�𝑎 be a
P𝑎-name for this club such that

∙ 𝑝 P𝑎 “�̇�𝑎 is a club”, and

∙ (𝑎, 𝑝) (S*×P𝑎) “�̇�𝑎 ∩ �̇� = ∅”.8

Since S is a small forcing, we may fix some 𝑎 ∈ 𝐻, such that

𝑇𝑎 := {𝛼 ∈ 𝐸𝜅<𝛿 | ∃𝑟 ∈ 𝐺[𝑟 ≤ 𝑝,𝜛(𝑟) = 𝑎 & 𝑟 P �̌� ∈ �̇� ]}
is stationary in 𝑉 [𝐺].

Claim 2.8.2. There is a condition 𝑝* ≤𝑎 𝑝 and an ordinal 𝛾 < 𝜅 such that
(𝑎, 𝑝*) (S*×P𝑎) 𝛾 ∈ �̇�𝑎 ∩ �̇� .

Proof. Work first in 𝑉 [𝐺]. Let 𝑀 be an elementary submodel of 𝐻𝜃 (for a
large enough regular cardinal 𝜃), such that:

∙ 𝑀 contains all the relevant objects, including �̇�𝑎 and (𝑎, 𝑝);
∙ 𝛾 := 𝑀 ∩ 𝜅 ∈ 𝑇𝑎

7Note that 𝛿 is still regular in 𝑉 [𝐺𝑎], as P𝑎 being 𝛿-strategically-closed over 𝑉 .
8Here we identify �̇�𝑎 and �̇� with a (S* × P𝑎)-name in the natural way (cf.

Lemma 2.7(1)).
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Let 𝜒 = cf𝑉 (𝛾) and ⟨𝛾𝑖 | 𝑖 < 𝜒⟩ ∈ 𝑉 be an increasing sequence with limit
𝛾. As 𝛾 ∈ 𝑇𝑎 ⊆ 𝐸𝜅<𝛿, 𝜒 < 𝛿. Also, since 𝛾 ∈ 𝑇𝑎, we may fix some 𝑟 ∈ 𝐺

with 𝜛(𝑟) = 𝑎 such that 𝑟 P 𝛾 ∈ �̇� . Using Clause (4) of Definition 2.2, let
𝑟* be a condition in P* such that 𝑟* + 𝑎 = 𝑟. Note that also 𝑟* ∈ 𝐺.

Below, for a condition 𝑝′ ∈ P𝑎, we say that 𝑝′ ∈ P𝑎/𝐺 if 𝑝′ + 𝑎 ∈ 𝐺. Then

for 𝑞 ∈ P, 𝑞 P 𝑝′ ∈ P𝑎/�̇� iff 𝑞 ≤P 𝑝′ + 𝑎.

Since 𝑝 forces �̇�𝑎 is a club, for all 𝛽 < 𝜅, there is 𝛽 ≤ 𝛼 < 𝜅, and 𝑝′ ≤𝑎 𝑝
forcing 𝛼 ∈ �̇�𝑎. And by density, we can find such 𝑝′ ∈ P𝑎/𝐺. Then by
elementarity and since 𝑝 ∈𝑀 , for all 𝑖 < 𝜒, there is 𝛼 ∈𝑀 ∖ 𝛾𝑖, and 𝑝′ ≤𝑎 𝑝

in 𝑀 , such that 𝑝′ ∈ P𝑎/𝐺 and 𝑝′ P𝑎 𝛼 ∈ �̇�𝑎.

Fix a name �̇� and, by strengthening 𝑟* if necessary, suppose that for some
𝑎′ ≤ 𝑎 in 𝐻, 𝑟* + 𝑎′ forces that the above properties hold. In particular, for
all 𝑖 < 𝜒 and 𝑞 ≤P 𝑟* + 𝑎′, then there are 𝑞′ ≤P 𝑞, 𝑝′ ≤𝑎 𝑝 and 𝛼 ≥ 𝛾𝑖, such
that 𝑞′ ≤P 𝑝′ + 𝑎, 𝑞′ P “𝑝′ ∈ �̇�, 𝛼 ∈ �̇�” and 𝑝′ P𝑎 𝛼 ∈ �̇�𝑎.

Breaking this down, we get that for all 𝑖 < 𝜒, if 𝑟′ ≤𝑎 𝑟
* and 𝑏 ≤S 𝑎′,

then there are 𝑏′ ≤S 𝑏, 𝑞′ ≤𝑎 𝑟
′, 𝑝′ ≤𝑎 𝑝 and 𝛾𝑖 ≤ 𝛼 < 𝜅, such that 𝑞′ ≤𝑎 𝑝

′,
𝑞′ + 𝑏′ P “𝑝′ ∈ �̇�, 𝛼 ∈ �̇�” and 𝑝′ P𝑎 𝛼 ∈ �̇�𝑎. The later also gives that

𝑞′ P𝑎 𝛼 ∈ �̇�𝑎. In other words we have the following for each 𝑖:
(†) for all 𝑟′ ≤𝑎 𝑟

* and 𝑏 ≤S 𝑎′, there are 𝑞′ ≤𝑎 𝑟
′, 𝑏′ ≤S 𝑏, and 𝛼 < 𝜅,

such that 𝑞′ + 𝑏′ P “𝛼 ∈ �̇� ∖ 𝛾𝑖” and 𝑞′ P𝑎 𝛼 ∈ �̇�𝑎.
Then, since the closure of ≤𝑎 is more than |S|, we get that for each 𝑖:
(††) for all 𝑟′ ≤𝑎 𝑟

*, there are 𝑞′ ≤𝑎 𝑟
′, and a dense 𝐷 ⊂ S, such that for

all 𝑏 ∈ 𝐷, there is 𝛼 < 𝜅, with 𝑞′ + 𝑏 P “𝛼 ∈ �̇� ∖ 𝛾𝑖” and 𝑞′ P𝑎 𝛼 ∈ �̇�𝑎.
Working in 𝑉 , construct a ≤𝑎-decreasing sequences ⟨𝑞𝑖 | 𝑖 ≤ 𝜒⟩ of condi-

tions in P𝑎 below 𝑟* and a family ⟨𝐷𝑖 | 𝑖 < 𝜒⟩ of dense sets of S with the
following properties: For each 𝑖 < 𝜒 and 𝑏 ∈ 𝐷𝑖, there is 𝛼 < 𝜅, such that:

(1) 𝑞𝑖+1 + 𝑏 P 𝛼 ∈ �̇� ∖ 𝛾𝑖, and

(2) 𝑞𝑖+1 P𝑎 𝛼 ∈ �̇�𝑎.

At successor stages we use (††), and at limit stages we take lower bounds.
Let 𝑝* := 𝑞𝜒. Since we can find 𝑝* as above ≤𝑎-densely often below 𝑟*,

we may assume that 𝑝* + 𝑎 ∈ 𝐺.
Now go back to 𝑉 [𝐺]. For each 𝑖 < 𝜒, let 𝑏𝑖 ∈ 𝐷𝑖 ∩ 𝐻, where recall

that 𝐻 is the induced S-generic from 𝐺. Also, let 𝛼𝑖 witness that 𝑏𝑖 ∈ 𝐷𝑖.
Then 𝑝* P𝑎 𝛼𝑖 ∈ �̇�𝑎, and in 𝑉 [𝐺], 𝛼𝑖 ∈ 𝑀 ∖ 𝛾𝑖 (since 𝑞𝑖+1 + 𝑏𝑖 ∈ 𝐺), so

𝛾 = sup𝑖 𝛼𝑖. It follows that 𝑝* P𝑎 𝛾 ∈ �̇�𝑎.

Finally, as 𝑝* +𝑎 ≤ 𝑟* +𝑎 = 𝑟, we have that 𝑝* +𝑎 P 𝛾 ∈ �̇� . Recall that
the projection from S*×P𝑎 to P is witnessed by (𝑎′, 𝑝′) ↦→ 𝑝′+𝑎′ (Lemma 2.6),

hence it follows that (𝑎, 𝑝*) S*×P𝑎 𝛾 ∈ �̇� . So, (𝑎, 𝑝*) S*×P𝑎 𝛾 ∈ �̇� ∩�̇�𝑎. �

Choose 𝑝* as in the above lemma. That gives a contradiction with
(𝑎, 𝑝) (S*×P𝑎) �̇�𝑎 ∩ �̇� = ∅. �

Definition 2.9. For stationary subsets ∆,Γ of a regular uncountable car-
dinal 𝜇, Refl(∆,Γ) asserts that for every stationary subset 𝑇 ⊆ ∆, there
exists 𝛾 ∈ Γ ∩ 𝐸𝜇>𝜔 such that 𝑇 ∩ 𝛾 is stationary in 𝛾.
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We end this section by establishing a sufficient condition for Refl(. . .) to
hold in generic extensions; this will play a crucial role at the end of Section 5.

Definition 2.10. For infinite cardinals 𝜏 < 𝜎 < 𝜅 < 𝜇, we say that (P, S, 𝜛)
is suitable for reflection with respect to ⟨𝜏, 𝜎, 𝜅, 𝜇⟩ iff all the following hold:

(1) P and S are nontrivial notions of forcing;
(2) 𝜛 : P→ S is an exact nice projection and P𝜛 contains a 𝜎-directed-

closed dense subset;9

(3) In any forcing extension by P or S× P𝜛, |𝜇| = cf(𝜇) = 𝜅 = 𝜎++;
(4) For any 𝑠 ∈ 𝑆 ∖ {1lS}, there is a cardinal 𝛿 with 𝜏+ < 𝛿 < 𝜎, such

that S ↓ 𝑠 ∼= Q×Col(𝛿,<𝜎) for some notion of forcing Q of size < 𝛿.

Lemma 2.11. Let (P,S, 𝜛) be suitable for reflection with respect to ⟨𝜏, 𝜎, 𝜅, 𝜇⟩.
Suppose 𝜎 is a supercompact cardinal indestructible under forcing with P𝜛.
Then 𝑉 P |= Refl(𝐸𝜇≤𝜏 , 𝐸

𝜇
<𝜎+).

Proof. By Definition 2.10(3), it suffices to prove that 𝑉 P |= Refl(𝐸𝜅≤𝜏 , 𝐸
𝜅
<𝜎+).

Let 𝐺 be P-generic. In 𝑉 [𝐺], let 𝑇 be a stationary subset of 𝐸𝜅≤𝜏 . Suppose
for simplicity that this is forced by the empty condition.

Claim 2.11.1. Let 𝑝 ∈ 𝐺 be such that 𝑠 := 𝜛(𝑝) strictly extends 1lS.
Then, the quotient ((S ↓ 𝑠)× (P𝜛 ↓ 𝑝))/𝐺 preserves the stationarity of 𝑇 .

Proof. Using Clauses (1) and (2) of Definition 2.10, let us pick any 𝑝 ∈ 𝐺
for which 𝑠 := 𝜛(𝑝) strictly extends 1lS. Back in 𝑉 , using Clause (4) of
Definition 2.10, fix a cardinal 𝛿 with 𝜏+ < 𝛿 < 𝜎, a notion of forcing Q of size
< 𝛿, and an isomorphism 𝜄 from S ↓ 𝑠 to Q×Col(𝛿,<𝜎). Let 𝜄0, 𝜄1 denote the
unique maps to satisfy 𝜄(𝑠′) = (𝜄0(𝑠

′), 𝜄1(𝑠
′)). By Example 2.3, 𝜄0 and 𝜄1 are

exact nice projections. Set 𝜋 := (𝜄0 ∘𝜛) � (P ↓ 𝑝) and 𝜚 := (𝜄1 ∘𝜛) � (P ↓ 𝑝),
so that 𝜋 and 𝜚 are nice projection from P ↓ 𝑝 to Q and from P ↓ 𝑝 to
Col(𝛿,<𝜎), respectively. Note that the definition of 𝜋 depends on our choice
of Q, which depends on our choice of 𝑝, and formally we defined 𝜋 as a
projection from P ↓ 𝑝 to Q. In an slight abuse of notation we will write P𝜋
rather than (P ↓ 𝑝)𝜋. More precisely, P𝜋 := ({𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝},≤𝜋).10

Subclaim 2.11.1.1.

(i) (S ↓ 𝑠) × (P𝜛 ↓ 𝑝) projects onto Q× (P𝜋 ↓ 𝑝), and that projects onto
P ↓ 𝑝;

(ii) (S ↓ 𝑠) × (P𝜛 ↓ 𝑝) projects onto Q× (P𝜋 ↓ 𝑝), and that projects onto
P𝜋 ↓ 𝑝;

(iii) (S ↓ 𝑠) × (P𝜛 ↓ 𝑝) projects onto Col(𝛿,<𝜎) × (P𝜛 ↓ 𝑝), and that
projects onto P𝜋 ↓ 𝑝.

9In particular, we assume that 𝜎 is a regular cardinal.
10Recall Definition 2.1.
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Proof. (i) For the first part, the map (𝑠′, 𝑝′) ↦→ (𝜄0(𝑠
′), 𝑝′ + 𝜄1(𝑠

′)) is such a
projection, where + operation is computed with respect to the nice projec-
tion 𝜚. For the second part, the map (𝑞′, 𝑝′) ↦→ 𝑝′+𝑞′ gives such a projection,
where the + operation is computed with respect to 𝜋.11

(ii) For the second part, the map (𝑞′, 𝑝′) ↦→ 𝑝′ is such a projection.
(iii) For the first part, the map (𝑠′, 𝑝′) ↦→ (𝜄1(𝑠

′), 𝑝′) is such a projection.
For the second part, the map (𝑐′, 𝑝′) ↦→ 𝑝′ + 𝑐′ is such a projection, where
the + operation is with respect to the nice projection 𝜚. �

By Definition 2.10(3), in all forcing extensions with posets from Clause (i),
𝜅 is a cardinal which is the double successor of 𝜎. But then, since |Q| < 𝜅,
it follows from the second part of Clause (ii) that 𝜅 is the double successor
of 𝜎 in forcing extensions by P𝜋 ↓ 𝑝. Actually, in any forcing extension by
P𝜋.12 Altogether, in all forcing extensions with posets from the preceding
subclaim, 𝜅 is the double successor of 𝜎.

Let 𝐺𝑞×𝐺* be (Q× (P𝜋 ↓ 𝑝))/𝐺-generic over 𝑉 [𝐺]. Next, we want to use
Lemma 2.8 to show that 𝑇 remains stationary in 𝑉 [𝐺𝑞 ×𝐺*], so we have to
verify its assumptions hold. The next claim along with Definition 2.10(4)
yields Clause (1) of Lemma 2.8:

Subclaim 2.11.1.2. P𝜋 contains a 𝛿-directed-closed dense set.

Proof. Let 𝐷 ⊆ P𝜛 be the 𝜎-directed-closed dense subset given by Clause (2)
of our assumptions.13 We claim that the set

𝐷′ := {𝑞 + 𝑐 | 𝑞 ∈ 𝐷, 𝑞 ≤𝜚 𝑝, 𝑐 ≤Col(𝛿,<𝜎) 𝜚(𝑝)}

is a 𝛿-directed-closed dense subset of P𝜋. Here 𝑞+𝑐 is computed with respect
to the projection map 𝜚 : P ↓ 𝑝→ Col(𝛿,< 𝜎).

For density, if 𝑞 ∈ P𝜋, since 𝜚 is a nice projection, let 𝑞′ ≤𝜚 𝑝 be with
𝑞′+𝜚(𝑞) = 𝑞. Now, let 𝑞′′ ≤𝜛 𝑞′ be in 𝐷. In particular, 𝜚(𝑞′′) = 𝜚(𝑝), so that
𝑞′′ + 𝜚(𝑞) is well-defined. Then 𝑞′′ + 𝜚(𝑞) ≤𝜋 𝑞, 𝑞′′ ≤𝜚 𝑝 and 𝑞′′ + 𝜚(𝑞) ∈ 𝐷′.

For directed closure, suppose that 𝜈 < 𝛿 and {𝑝𝛼 | 𝛼 < 𝜈} is a ≤𝜋-
directed set in 𝐷′. For each 𝛼 < 𝜈, write 𝑝𝛼 = 𝑞𝛼 + 𝑐𝛼, where 𝑞𝛼 ∈ 𝐷,
𝜚(𝑞𝛼) = 𝜚(𝑝), and 𝑐𝛼 = 𝜚(𝑝𝛼) ∈ Col(𝛿,<𝜎). Note that for each 𝛼 < 𝜈,
𝜋(𝑞𝛼) = 𝜋(𝑝𝛼). Note that 𝑝𝛼 and 𝑝𝛽 being ≤𝜋-compatible implies that 𝑞𝛼
and 𝑞𝛽 are ≤-compatible and also that 𝜋(𝑞𝛼) = 𝜋(𝑞𝛽), hence 𝑞𝛼 and 𝑞𝛽 are
actually ≤𝜛-compatible. Clearly, it also yields 𝑐𝛼 ∪ 𝑐𝛽 ∈ Col(𝛿,<𝜎).

Then {𝑞𝛼 | 𝛼 < 𝜈} is a ≤𝜛-directed set in 𝐷 of size < 𝜅, so we may let
𝑞 ∈ 𝐷 be a ≤𝜛-lower bound for {𝑞𝛼 | 𝛼 < 𝜈}. In particular, 𝜚(𝑞) = 𝜚(𝑝)
and 𝜋(𝑞) = 𝜋(𝑝𝛼) for all 𝛼 < 𝜈. Additionally, let 𝑐 :=

⋃︀
𝛼<𝜈 𝑐𝛼 ∈ Col(𝛿,<𝜎).

Then 𝑞 + 𝑐 ∈ 𝐷′ is the desired ≤𝜋-lower bound for {𝑝𝛼 | 𝛼 < 𝜈}. �

11See Clause (4) of Definition 2.2(4) regarded with respect to 𝜋.
12Note that Subclaim 2.11.1.1 remains valid even if we replace 𝑝 by any 𝑝′ ≤ 𝑝. For

instance, regarding Clause (i), we will then have that (S ↓ 𝜛(𝑝′))× (P𝜛 ↓ 𝑝′) projects onto
(Q ↓ 𝜋(𝑝′))× (P𝜋 ↓ 𝑝′) and that this latter projects onto P ↓ 𝑝′.

13I.e., 𝐷 is dense and 𝜎-directed-closed with respect to ≤𝜛.
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Clause (2) of Lemma 2.8 easily follows combining the above subclaim, the
fact that P𝜋 forces “𝜅 = 𝜎++” and Clause (4) of Definition 2.10. Finally, for
Clause (3) we argue as follows: first, the above subclaim implies that 𝐸𝜅<𝛿
is computed in the same way in 𝑉 and 𝑉 P

𝜋
. Second, Clauses (3) and (4) of

Definition 2.10 and [She91, Lemma 4.4] yield 𝑉 P |= 𝐸𝜅<𝛿 ⊆ 𝐸𝜎
++

<𝜎+ ∈ 𝐼[𝜎++].
Thereby, 𝑇 remains stationary in 𝑉 [𝐺𝑞 × 𝐺*]. As Q is small, we may

fix 𝑇 ′ ⊆ 𝑇 such that 𝑇 ′ is in 𝑉 [𝐺*] and moreover stationary in 𝑉 [𝐺*]. As

established earlier, 𝑉 [𝐺*] |= “𝑇 ′ ⊆ 𝐸𝜎
++

<𝜎+ ∈ 𝐼[𝜎++]”. Since both P𝜋 and P𝜛
are 𝛿-strategically closed (actually P𝜛 is more), we have that, in 𝑉 [𝐺*], the
quotient (Col(𝛿,<𝜎) × (P𝜛 ↓ 𝑝))/𝐺* is also 𝛿-strategically closed. So, again
it follows that (Col(𝛿,<𝜎) × (P𝜛 ↓ 𝑝))/𝐺* preserves the stationarity of 𝑇 ′.

Finally, since S ↓ 𝑠 ∼= Q× Col(𝛿,<𝜎), the quotient

((S ↓ 𝑠) × (P𝜛 ↓ 𝑝))/(Col(𝛿,<𝜎) × (P𝜛 ↓ 𝑝))
is isomorphic to Q, which is a small of forcing. Altogether, 𝑇 ′ (and hence
also 𝑇 ) remains stationary in the generic extension 𝑉 [𝐺]. �

Let 𝑝 ∈ 𝐺 be such that 𝑠 := 𝜛(𝑝) strictly extends 1lS. Let 𝐻 be the
generic filter for S induced by 𝜛 and 𝐺. Let 𝐺* be such that 𝐻 × 𝐺* is
generic for ((S ↓ 𝑠) × (P𝜛 ↓ 𝑝))/𝐺. By the above claim, 𝑇 is still stationary

in 𝑉 [𝐺*][𝐻]. Also, by Definition 2.10(3), 𝑇 ⊆ (𝐸𝜎
++

≤𝜏 )𝑉 [𝐺*][𝐻].

Using that 𝜎 is a supercompact indestructible under P𝜛, let (in 𝑉 [𝐺*])

𝑗 : 𝑉 [𝐺*] →𝑀

be a 𝜅-supercompact embedding with crit(𝑗) = 𝜎. We shall want to lift this
embedding to 𝑉 [𝐺*][𝐻].

Work below the condition 𝑠 that we fixed earlier. Recall that S ↓ 𝑠 ∼=
Q × Col(𝛿,<𝜎) for some poset Q of size < 𝛿 with 𝜏+ < 𝛿 < 𝜎. So, 𝐻 may
be seen as a product of two corresponding generics, 𝐻 = 𝐻0 ×𝐻1. For the
ease of notation, put C := Col(𝛿,<𝜎).

Since Q has size < 𝛿 < crit(𝑗), we can lift 𝑗 to an embedding

𝑗 : 𝑉 [𝐺*][𝐻0] →𝑀 ′.

Then we lift 𝑗 again to get

𝑗 : 𝑉 [𝐺*][𝐻] → 𝑁

in an outer generic extension of 𝑉 [𝐺*][𝐻] by 𝑗(C)/𝐻1. Since 𝑗(C)/𝐻1 is
𝛿-closed in 𝑀 ′[𝐻1] and this latter model is closed under 𝜅-sequences in
𝑉 [𝐺*][𝐻], then 𝑗(C)/𝐻1 is also 𝛿-closed in 𝑉 [𝐺*][𝐻].

Set 𝛾 := sup(𝑗“𝜅). Clearly, 𝑗(𝑇 ) ∩ 𝛾 = 𝑗“𝑇 . Note that, by virtue of the
collapse 𝑗(C), 𝑁 |= “|𝜅| = 𝛿 & cf(𝛾) ≤ cf(|𝜅|) = 𝛿 < 𝑗(𝜎)”.

Once again, [She91, Lemma 4.4] Definition 2.10(3) together yield

𝑇 ⊆ (𝐸𝜎
++

≤𝜏 )𝑉 [𝐺*][𝐻] ⊆ (𝐸𝜎
++

<𝜎+)𝑉 [𝐺*][𝐻] ∈ 𝐼[𝜎++]𝑉 [𝐺*][𝐻].

As customary, Shelah’s theorem (c.f. [She79]) along with the 𝛿-closedness of
𝑗(C)/𝐻1 in 𝑉 [𝐺*][𝐻] imply that this latter forcing preserves the stationarity
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of 𝑇 . Now, a standard argument shows that that 𝑗(𝑇 ) ∩ 𝛾 is stationary in

𝑁 . Thus, “∃𝛼 ∈ 𝐸
𝑗(𝜅)
<𝑗(𝜎)(𝑗(𝑇 ) ∩ 𝛼 is stationary in 𝛼)” holds in 𝑁 . So, by

elementarity, in 𝑉 [𝐺*][𝐻], 𝑇 reflects at a point of cofinality <𝜎+.14 Since
reflection is downwards absolute, it follows that 𝑇 reflects at a point of
cofinality < 𝜎+ in 𝑉 [𝐺], as wanted. �

3. (Σ, S⃗)-Prikry forcings

We commence by recalling a few concepts from [PRS20, S2].

Definition 3.1. A graded poset is a pair (P, ℓ) such that P = (𝑃,≤) is a
poset, ℓ : 𝑃 → 𝜔 is a surjection, and, for all 𝑝 ∈ 𝑃 :

∙ For every 𝑞 ≤ 𝑝, ℓ(𝑞) ≥ ℓ(𝑝);
∙ There exists 𝑞 ≤ 𝑝 with ℓ(𝑞) = ℓ(𝑝) + 1.

Convention 3.2. For a graded poset as above, we denote 𝑃𝑛 := {𝑝 ∈ 𝑃 |
ℓ(𝑝) = 𝑛} and P𝑛 := (𝑃𝑛 ∪ {1l},≤). In turn, P≥𝑛 and P>𝑛 are defined
analogously. We also write 𝑃 𝑝𝑛 := {𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝, ℓ(𝑞) = ℓ(𝑝) + 𝑛}, and
sometimes write 𝑞 ≤𝑛 𝑝 (and say that 𝑞 is an 𝑛-step extension of 𝑝) rather
than writing 𝑞 ∈ 𝑃 𝑝𝑛 .

A subset 𝑈 ⊆ 𝑃 is said to be 0-open set iff, for all 𝑟 ∈ 𝑈 , 𝑃 𝑟0 ⊆ 𝑈 .

Now, we define the (Σ, S⃗)-Prikry class, a class broader than Σ-Prikry from
[PRS20, Definition 2.3].

Definition 3.3. Suppose:

(𝛼) Σ = ⟨𝜎𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing sequence of regular uncountable
cardinals, converging to some cardinal 𝜅;

(𝛽) S⃗ = ⟨S𝑛 | 𝑛 < 𝜔⟩ is a sequence of notions of forcing, S𝑛 = (𝑆𝑛,⪯𝑛),
with |𝑆𝑛| < 𝜎𝑛;

(𝛾) P = (𝑃,≤) is a notion of forcing with a greatest element 1l;
(𝛿) 𝜇 is a cardinal such that 1l P �̌� = �̌�+;
(𝜀) ℓ : 𝑃 → 𝜔 and 𝑐 : 𝑃 → 𝜇 are functions;15

(𝜁) �⃗� = ⟨𝜛𝑛 | 𝑛 < 𝜔⟩ is a sequence of functions.

We say that (P, ℓ, 𝑐, �⃗�) is (Σ, S⃗)-Prikry iff all of the following hold:

(1) (P, ℓ) is a graded poset;

(2) For all 𝑛 < 𝜔, P𝑛 := (𝑃𝑛 ∪ {1l},≤) contains a dense subposet P̊𝑛
which is countably-closed;

(3) For all 𝑝, 𝑞 ∈ 𝑃 , if 𝑐(𝑝) = 𝑐(𝑞), then 𝑃 𝑝0 ∩ 𝑃 𝑞0 is non-empty;
(4) For all 𝑝 ∈ 𝑃 , 𝑛,𝑚 < 𝜔 and 𝑞 ≤𝑛+𝑚 𝑝, the set {𝑟 ≤𝑛 𝑝 | 𝑞 ≤𝑚 𝑟}

contains a greatest element which we denote by 𝑚(𝑝, 𝑞).16 In the
special case 𝑚 = 0, we shall write 𝑤(𝑝, 𝑞) rather than 0(𝑝, 𝑞);17

14Actually, at a point of cofinality < 𝜎.
15In some applications 𝑐 will be a function from 𝑃 to some canonical structure of size

𝜇, such as 𝐻𝜇 (assuming 𝜇<𝜇 = 𝜇).
16By convention, a greatest element, if exists, is unique.
17Note that 𝑤(𝑝, 𝑞) is the weakest extension of 𝑝 above 𝑞.
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(5) For all 𝑝 ∈ 𝑃 , the set 𝑊 (𝑝) := {𝑤(𝑝, 𝑞) | 𝑞 ≤ 𝑝} has size < 𝜇;
(6) For all 𝑝′ ≤ 𝑝 in 𝑃 , 𝑞 ↦→ 𝑤(𝑝, 𝑞) forms an order-preserving map from

𝑊 (𝑝′) to 𝑊 (𝑝);
(7) Suppose that 𝑈 ⊆ 𝑃 is a 0-open set. Then, for all 𝑝 ∈ 𝑃 and 𝑛 < 𝜔,

there is 𝑞 ≤0 𝑝, such that, either 𝑃 𝑞𝑛 ∩ 𝑈 = ∅ or 𝑃 𝑞𝑛 ⊆ 𝑈 ;
(8) For all 𝑛 < 𝜔, 𝜛𝑛 is a nice projection from P≥𝑛 to S𝑛, such that, for

any integer 𝑘 ≥ 𝑛, 𝜛𝑛 � P𝑘 is again a nice projection;
(9) For all 𝑛 < 𝜔, if P̊𝑛 is a witness for Clause (2) then P̊𝜛𝑛

𝑛 is a ≤𝜛𝑛-
dense and 𝜎𝑛-directed-closed subposet of P𝜛𝑛

𝑛 := (𝑃𝑛 ∪ {1l},≤𝜛𝑛).18

Convention 3.4. We derive yet another ordering ≤�⃗� of the set 𝑃 , letting
≤�⃗� :=

⋃︀
𝑛<𝜔 ≤𝜛𝑛 . Simply put, this means that 𝑞 ≤�⃗� 𝑝 iff (𝑝 = 1l), or,

(𝑞 ≤0 𝑝, ℓ(𝑝) = ℓ(𝑞) and 𝜛ℓ(𝑝)(𝑝) = 𝜛ℓ(𝑞)(𝑞)).

Convention 3.5. We say that (P, ℓ, 𝑐) has the Linked0-property if it wit-
nesses Clause (3) above. Similarly, we will say that (P, ℓ) has the Complete
Prikry Property (CPP) if it witnesses Clause (7).

Any Σ-Prikry triple (P, ℓ, 𝑐) can be regarded as a (Σ, S⃗)-Prikry forcing

(P, ℓ, 𝑐, �⃗�) by letting S⃗ := ⟨(𝑛, {1lP}) | 𝑛 < 𝜔⟩ and �⃗� be the sequence of trivial

projections 𝑝 ↦→ 1lP. Conversely, any (Σ, S⃗)-Prikry quadruple (P, ℓ, 𝑐, �⃗�)

with S⃗ and �⃗� as above witnesses that (P, ℓ, 𝑐) is Σ-Prikry. In particular,

all the forcings from [PRS19, S3] are examples of (Σ, S⃗)-Prikry forcings. In
Section 4, we will add a new example to this list by showing that Gitik’s
EPBFC (The long Extender-Based Prikry forcing with Collapses [Git19b])

falls into the (Σ, S⃗)-Prikry framework.

Throughout the rest of the section, assume that (P, ℓ, 𝑐, �⃗�) is a (Σ, S⃗)-
Prikry quadruple. We shall spell out some basic features of the components
of the quadruple, and work towards proving Lemma 3.14 that explains how
bounded sets of 𝜅 are added to generic extensions by P.

Lemma 3.6 (The 𝑝-tree). Let 𝑝 ∈ 𝑃 .

(1) For every 𝑛 < 𝜔, 𝑊𝑛(𝑝) is a maximal antichain in P ↓ 𝑝;
(2) Every two compatible elements of 𝑊 (𝑝) are comparable;
(3) For any pair 𝑞′ ≤ 𝑞 in 𝑊 (𝑝), 𝑞′ ∈𝑊 (𝑞);
(4) 𝑐 �𝑊 (𝑝) is injective.

Proof. The proof of [PRS19, Lemma 2.8] goes through. �

We commence by introducing the notion of coherent sequence of nice
projections, which will be important in Section 6.

Definition 3.7. The sequence of nice projections �⃗� is called coherent if:

(1) for all 𝑛 < 𝜔, if 𝑝 ∈ 𝑃≥𝑛 then 𝜛𝑛“𝑊 (𝑝) = {𝜛𝑛(𝑝)};
(2) for all 𝑛 ≤ 𝑚 < 𝜔, 𝜛𝑚 factors through 𝜛𝑛; i.e., there is a map

𝜋𝑚,𝑛 : S𝑚 → S𝑛 such that 𝜛𝑛(𝑝) = 𝜋𝑚,𝑛(𝜛𝑚(𝑝)) for all 𝑝 ∈ 𝑃≥𝑚.

18More verbosely, for every 𝑝 ∈ 𝑃𝑛 there is 𝑞 ∈ 𝑃𝑛 such that 𝑞 ≤𝜛𝑛 𝑝 (see Notation 2.1).
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Lemma 3.8. Assume that �⃗� is coherent.
For every 𝑛 < 𝜔, if 𝑝 ∈ 𝑃≥𝑛 and 𝑡 ⪯𝑛 𝜛𝑛(𝑝) the following hold:

(1) for each 𝑞 ∈𝑊 (𝑝+ 𝑡), 𝑞 = 𝑤(𝑝, 𝑞) + 𝑡;
(2) for each 𝑞 ∈𝑊 (𝑝), 𝑤(𝑝+ 𝑡, 𝑞 + 𝑡) = 𝑞 + 𝑡;
(3) for each 𝑚 < 𝜔, 𝑊𝑚(𝑝+ 𝑡) = {𝑞 + 𝑡 | 𝑞 ∈𝑊𝑚(𝑝)}.
(4) 𝑝+ 𝑡 = 𝑝+𝜛ℓ(𝑝)(𝑝+ 𝑡);

Proof. (1) Let 𝑞 ∈𝑊 (𝑝+𝑡). By virtue of Definition 3.7(1), we have 𝜛𝑛(𝑞) =
𝜛𝑛(𝑝 + 𝑡) = 𝑡. This, together with 𝑞 ≤0 𝑤(𝑝, 𝑞), implies that 𝑤(𝑝, 𝑞) + 𝑡
is well-defined and also that 𝑞 ≤0 𝑤(𝑝, 𝑞) + 𝑡. On the other hand, 𝑞 ≤0

𝑤(𝑝, 𝑞) + 𝑡 ≤ 𝑝 + 𝑡, hence 𝑤(𝑝 + 𝑡, 𝑤(𝑝, 𝑞) + 𝑡) and 𝑞 are two compatible
conditions in 𝑊 (𝑝 + 𝑡) that have the same length. By Lemma 3.6(1) it
follows that 𝑞 = 𝑤(𝑝+ 𝑡, 𝑤(𝑝, 𝑞) + 𝑡), hence 𝑤(𝑝, 𝑞) + 𝑡 ≤0 𝑞, as desired.

(2) By Definition 3.7(1), 𝑞 ≤𝜛𝑛 𝑝, hence 𝑞 + 𝑡 is well-defined and so
𝑤(𝑝 + 𝑡, 𝑞 + 𝑡) belongs to 𝑊 (𝑝 + 𝑡). Combining Clause (1) above with
[PRS19, Lemma 2.9] we obtain the following chain of equalities:

𝑤(𝑝+ 𝑡, 𝑞 + 𝑡) = 𝑤(𝑝, 𝑤(𝑝+ 𝑡, 𝑞 + 𝑡)) + 𝑡 = 𝑤(𝑝, 𝑞 + 𝑡) + 𝑡.

Now, combine Lemma 3.9 with 𝑞 ∈ 𝑊 (𝑝) to infer that 𝑤(𝑝, 𝑞 + 𝑡) = 𝑞.
Altogether, this shows that 𝑤(𝑝+ 𝑡, 𝑞 + 𝑡) = 𝑞 + 𝑡.

(3) The left-to-right inclusion is given by (1) and the converse by (2).
(4) Note that 𝑝+ 𝑡 ≤ 𝑝+𝜛ℓ(𝑝)(𝑝+ 𝑡). Conversely, by using Clause (2) of

Definition 3.7 we have that 𝜛𝑛(𝑝+𝜛ℓ(𝑝)(𝑝+ 𝑡)) = 𝜛𝑛(𝑝+ 𝑡) = 𝑡. �

Lemma 3.9. Let 𝑝 ∈ 𝑃 . Then for each 𝑞 ∈𝑊 (𝑝), 𝑛 ≤ ℓ(𝑞) and 𝑡 ⪯𝑛 𝜛𝑛(𝑞),

𝑤(𝑝, 𝑞 + 𝑡) = 𝑤(𝑝, 𝑞).

Proof. Note that 𝑤(𝑝, 𝑞 + 𝑡) and 𝑤(𝑝, 𝑞) are two compatible conditions in
𝑊 (𝑝) with the same length. In effect, Lemma 3.6(1) yields the desired. �

Proposition 3.10. For every condition 𝑝 in P and an ordinal 𝛼 < 𝜅, there
exists an extension 𝑝′ ≤ 𝑝 such that 𝜎ℓ(𝑝′) > 𝛼.

Proof. Let 𝑝 and 𝛼 be as above. Since 𝛼 < 𝜅 = sup𝑛<𝜔 𝜎𝑛, we may find some
𝑛 < 𝜔 such that 𝛼 < 𝜎𝑛. By Definition 3.3(1), (P, ℓ) is a graded poset, so by
possibly iterating the second bullet of Definition 3.1 finitely many times, we
may find an extension 𝑝′ ≤ 𝑝 such that ℓ(𝑝′) ≥ 𝑛. As Σ is non-decreasing,
𝑝′ is as desired. �

As in the context of Σ-Prikry forcings, also here, the CPP implies the
Prikry Property (PP) and the Strong Prikry Property (SPP).

Lemma 3.11. Let 𝑝 ∈ 𝑃 .

(1) Suppose 𝜙 is a sentence in the language of forcing. Then there is
𝑝′ ≤0 𝑝, such that 𝑝′ decides 𝜙;

(2) Suppose 𝐷 ⊆ 𝑃 is a 0-open set which is dense below 𝑝. Then there

is 𝑝′ ≤0 𝑝, and 𝑛 < 𝜔, such that 𝑃 𝑝
′

𝑛 ⊆ 𝐷.19

19Note that if 𝐷 is moreover open, then 𝑃 𝑞
𝑚 ⊆ 𝐷 for all 𝑚 ≥ 𝑛.
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Moreover, we can let 𝑝′ above to be a condition from P̊𝜛ℓ(𝑝)

ℓ(𝑝) ↓ 𝑝.

Proof. We only give the proof of (1), the proof of (2) is similar. Fix 𝜙 and 𝑝.
Put 𝑈+

𝜙 := {𝑞 ∈ 𝑃 | 𝑞 P 𝜙} and 𝑈−
𝜙 := {𝑞 ∈ 𝑃 | 𝑞 P ¬𝜙}. Both of these

are 0-open, so applying Clause (7) of Definition 3.3 twice, we get following:

Claim 3.11.1. For all 𝑞 ∈ 𝑃 and 𝑛 < 𝜔, there is 𝑞′ ≤0 𝑞, such that either

all 𝑟 ∈ 𝑃 𝑞
′

𝑛 decide 𝜙 the same way, or no 𝑟 ∈ 𝑃 𝑞
′

𝑛 decides 𝜙.

Now using the claim construct a ≤0 decreasing sequence ⟨𝑝𝑛 | 𝑛 < 𝜔⟩
below 𝑝. By using Clause (2) of Definition 3.3 we may additionally assume

that these are conditions in P̊ℓ(𝑝). Letting 𝑝′ a ≤0-lower bound for this

sequence we obtain ≤0-extension of 𝑝 deciding 𝜙. �

Corollary 3.12. Let 𝑝 ∈ 𝑃 and 𝑠 ⪯ℓ(𝑝) 𝜛ℓ(𝑝)(𝑝).

(1) Suppose 𝜙 is a sentence in the language of forcing. Then there is
𝑝′ ≤�⃗� 𝑝 and 𝑠′ ⪯ℓ(𝑝) 𝑠 such that 𝑝′ + 𝑠′ decides 𝜙;

(2) Suppose 𝐷 ⊆ 𝑃 is a 0-open set which is dense below 𝑝. Then there

are 𝑝′ ≤�⃗� 𝑝, 𝑠′ ⪯ℓ(𝑝) 𝑠 and 𝑛 < 𝜔 such that 𝑃 𝑝
′+𝑠′

𝑛 ⊆ 𝐷.

Moreover, we can let 𝑝′ above to be a condition from P̊𝜛ℓ(𝑝)

ℓ(𝑝) ↓ 𝑝.

Proof. We only show (1) as (2) is similar. By Lemma 3.11, let 𝑞 ≤0 𝑝 + 𝑠
deciding 𝜙. By Definition 3.3(8) the map 𝜛𝑛 is a nice projection, hence
there is 𝑝′ ≤�⃗� 𝑝 and 𝑠′ ⪯ℓ(𝑝) 𝑠 such that 𝑝′ + 𝑠′ = 𝑞 (Definition 2.2(4)). The

moreover part follows from density of P̊𝜛ℓ(𝑝)

ℓ(𝑝) in P𝜛ℓ(𝑝)

ℓ(𝑝) (Definition 3.3(9)). �

Working a bit more we can obtain the following:

Lemma 3.13. Let 𝑝 ∈ 𝑃 . Set ℓ := ℓ(𝑝) and 𝑠 := 𝜛𝑛(𝑝).

(1) Suppose 𝜙 is a sentence in the language of forcing. Then there is
𝑞 ≤�⃗� 𝑝 such that 𝐷𝜙,𝑞 := {𝑡 ⪯ℓ 𝑠 | (𝑞 + 𝑡 P 𝜙) or (𝑞 + 𝑡 P ¬𝜙)} is
dense in Sℓ ↓ 𝑠;

(2) Suppose 𝐷 ⊆ 𝑃 is a 0-open set. Then there is 𝑞 ≤�⃗� 𝑝 such that

𝑈𝐷,𝑞 := {𝑡 ⪯ℓ 𝑠 | ∀𝑚 < 𝜔 (𝑃 𝑞+𝑡𝑚 ⊆ 𝐷 or 𝑃 𝑞+𝑡𝑚 ∩𝐷 = ∅)} is dense in
Sℓ ↓ 𝑠.

(3) Suppose 𝐷 ⊆ 𝑃 is a 0-open set which is dense below 𝑝. Then there

is 𝑞 ≤�⃗� 𝑝 such that 𝑈𝐷,𝑞 := {𝑡 ⪯ℓ 𝑠 | ∃𝑚 < 𝜔 𝑃 𝑞+𝑡𝑚 ⊆ 𝐷} is dense
in Sℓ ↓ 𝑠.

Moreover, 𝑞 above belongs to P̊𝜛ℓ
ℓ ↓ 𝑝.

Proof. (1) By Definition 3.3(𝛽), let us fix some cardinal 𝜃 < 𝜎ℓ along with
an injective enumeration ⟨𝑠𝛼 | 𝛼 < 𝜃⟩ of the conditions in Sℓ ↓ 𝑠, such that
𝑠0 = 𝑠. We will construct by recursion two sequences of conditions 𝑝 = ⟨𝑝𝛼 |
𝛼 < 𝜃⟩ and �⃗� = ⟨𝑠𝛼 | 𝛼 < 𝜃⟩ for which all of the following hold:

(a) 𝑝 is a ≤�⃗�-decreasing sequence of conditions in P̊𝜛ℓ
ℓ below 𝑝;

(b) �⃗� is a sequence of conditions below 𝑠;
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(c) for each 𝛼 < 𝜃, 𝑠𝛼 ⪯𝑛 𝑠𝛼 and 𝑝𝛼 + 𝑠𝛼 ‖P 𝜙.

To see that this will do, assume for a moment that there are sequences 𝑝
and �⃗� as above. Since 𝜃 < 𝜎ℓ, we may find a ≤�⃗�-lower bound 𝑞 for 𝑝 in P̊𝜛ℓ

ℓ .

In particular, 𝑞 ≤�⃗� 𝑝. We claim that 𝐷𝜙,𝑞 is dense in Sℓ ↓ 𝑠. To this end,
let 𝑠′ ⪯ℓ 𝑠 be arbitrary. Find 𝛼 < 𝜃 such that 𝑠′ = 𝑠𝛼. By the hypothesis,
𝑠𝛼 ⪯ℓ 𝑠𝛼 and 𝑝𝛼 + 𝑠𝛼 decides 𝜙, hence 𝑞 + 𝑠𝛼 also decides it. In particular,
𝑠𝛼 is an extension of 𝑠′ belonging to 𝐷𝜙,𝑞.

Claim 3.13.1. There are sequences 𝑝 and �⃗� as above.

Proof. We construct the two sequences by recursion on 𝛼 < 𝜃. For the base
case, appeal to Corollary 3.12(1) with 𝑝 and 𝑠, and retrieve 𝑝0 ≤�⃗� 𝑝 and

𝑠0 ⪯𝑛 𝑠 such that 𝑝0 ∈ 𝑃𝜛ℓ
ℓ and 𝑝0 + 𝑠0 indeed decides 𝜙.

I Assume 𝛼 = 𝛽 + 1 and that ⟨𝑝𝛾 | 𝛾 ≤ 𝛽⟩ and ⟨𝑠𝛾 | 𝛾 ≤ 𝛽⟩ have
been already defined. Since 𝑠𝛼 ⪯ℓ 𝑠 = 𝜛ℓ(𝑝

𝛽), it follows that 𝑝𝛽 + 𝑠𝛼 is a
legitimate condition in 𝑃ℓ. Appealing to Corollary 3.12(1) with 𝑝𝛽 and 𝑠𝛼,

let 𝑝𝛼 ≤�⃗� 𝑝𝛽 and 𝑠𝛼 ⪯ℓ 𝑠𝛼 be such that 𝑝𝛼 ∈ 𝑃𝜛ℓ
ℓ and 𝑝𝛼 + 𝑠𝛼 decides 𝜙.

I Assume 𝛼 ∈ acc(𝜃) and that the sequences ⟨𝑝𝛽 | 𝛽 < 𝛼⟩ and ⟨𝑠𝛽 |
𝛽 < 𝛼⟩ have already been defined. Appealing to Definition 3.3(9), let 𝑝*

be a ≤�⃗�-lower bound for ⟨𝑝𝛽 | 𝛽 < 𝛼⟩. Finally, obtain 𝑝𝛼 ∈ 𝐷 and 𝑠𝛼 by
appealing to Corollary 3.12(1) with respect to 𝑝* and 𝑠𝛼. �

This completes the proof of Clause (1). The proof of Clauses (2) and
(3) is similar by amending suitably Clause (c) above. For instance, for
Clause (2) we require the following in Clause (c): for each 𝛼 < 𝜃 and 𝑛 < 𝜔,

𝑠𝛼 ⪯𝑛 𝑠𝛼 and either 𝑃 𝑝
𝛼+𝑠𝛼

𝑛 ⊆ 𝐷 or 𝑃 𝑝
𝛼+𝑠𝛼

𝑛 ∩𝐷 = ∅. For the verification of
this new requirement we combine Clauses (2), (7) and (8) of Definition 3.3
with Definition 2.2(4). Similarly, to prove Clause (3) of the lemma one uses
Clause (2) of Corollary 3.12. �

We now arrive at the main result of the section:

Lemma 3.14 (Analysis of bounded sets).

(1) If 𝑝 ∈ 𝑃 forces that �̇� is a P-name for a bounded subset 𝑎 of 𝜎ℓ(𝑝),
then 𝑎 is added by Sℓ(𝑝). In particular, if �̇� is a P-name for a bounded
subset 𝑎 of 𝜅, then, for any large enough 𝑛 < 𝜔, 𝑎 is added by S𝑛;

(2) P preserves 𝜅. Moreover, if 𝜅 is a strong limit, it remains so;
(3) For every regular cardinal 𝜈 ≥ 𝜅, if there exists 𝑝 ∈ 𝑃 for which

𝑝 P cf(𝜈) < 𝜅, then there exists 𝑞 ≤�⃗� 𝑝 with |𝑊 (𝑞)| ≥ 𝜈;20

(4) Suppose 1l P “𝜅 is singular”. Then 𝜇 = 𝜅+ if and only if, for all
𝑝 ∈ 𝑃 , |𝑊 (𝑝)| ≤ 𝜅.

Proof. (1) The “in particular” part follows from the first part together with
Proposition 3.10. Thus, let us suppose that 𝑝 is a given condition forcing
that �̇� is a name for a subset 𝑎 of some cardinal 𝜃 < 𝜎ℓ(𝑝).

20For future reference, we point out that this fact relies only on clauses (1), (5), (7),
(8) and (9) of Definition 3.3.
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For each 𝛼 < 𝜃, denote the sentence “�̌� ∈ �̇�” by 𝜙𝛼. Set 𝑛 := ℓ(𝑝)
and 𝑠 := 𝜛𝑛(𝑝). Combining Definition 3.3(9) with Lemma 3.13(1), we may
recursively obtain a ≤𝜛𝑛-decreasing sequence of conditions 𝑝 = ⟨𝑝𝛼 | 𝛼 < 𝜃⟩
with a lower bound, such that, for each 𝛼 < 𝜃, 𝑝𝛼 ≤𝜛𝑛 𝑝 and 𝐷𝜙𝛼,𝑝𝛼 is dense
in S𝑛 ↓ 𝑠. Then let 𝑞 ∈ 𝑃𝑛 be ≤𝜛𝑛-below all elements of 𝑝. It follows that
for every 𝛼 < 𝜃,

𝐷𝜙𝛼,𝑞 = {𝑡 ⪯𝑛 𝑠 | (𝑞 + 𝑡 P 𝜙𝛼) or (𝑞 + 𝑡 P ¬𝜙𝛼)}
is dense in S𝑛 ↓ 𝑠.

Now, let 𝐺 be a P-generic filter with 𝑝 ∈ 𝐺. Let 𝐻𝑛 be the S𝑛-generic
filter induced by 𝜛𝑛 from 𝐺, and work in 𝑉 [𝐻𝑛]. It follows that, for every
𝛼 < 𝜃, for some 𝑡 ∈ 𝐻𝑛, either (𝑞 + 𝑡 P �̌� ∈ �̇�) or (𝑞 + 𝑡 P �̌� /∈ �̇�). Set

𝑏 := {𝛼 < 𝜃 | ∃𝑡 ∈ 𝐻𝑛[𝑞 + 𝑡 P �̌� ∈ �̇�]}.

As 𝑞 ≤�⃗� 𝑝, we infer that 𝜛𝑛(𝑞) = 𝜛𝑛(𝑝) = 𝑠 ∈ 𝐻𝑛, so that 𝑞 ∈ 𝑃/𝐻𝑛.

Claim 3.14.1. 𝑞 P/𝐻𝑛
𝑏 = �̇�𝐻𝑛.

Proof. Clearly, 𝑞 P/𝐻𝑛
𝑏 ⊆ �̇�𝐻𝑛 . For the converse, let 𝛼 < 𝜃 and 𝑟 ≤P/𝐻𝑛

𝑞
be such that 𝑟 P/𝐻𝑛

�̌� ∈ �̇�𝐻𝑛 . By the very Definition 2.4, there is 𝑡0 ∈ 𝐻𝑛

with 𝑡0 ⪯𝑛 𝜛𝑛(𝑟) such that 𝑟+ 𝑡0 ≤ 𝑞. By extending 𝑡 if necessary, we may
moreover assume that 𝑟 + 𝑡0 P �̌� ∈ �̇�. Set 𝑞0 := 𝑟 + 𝑡0.

By the choice of 𝑞, there is 𝑡1 ∈ 𝐻𝑛 such that 𝑞 + 𝑡1 ‖P �̌� ∈ �̇�. Set
𝑞1 := 𝑞+ 𝑡1. Let 𝑡 ∈ 𝐻𝑛 be such that 𝑡 ⪯𝑛 𝑡0, 𝑡1. Recalling Definition 3.3(9),
𝜛𝑛 is nice, so 𝑡 ⪯𝑛 𝜛𝑛(𝑞0), 𝜛𝑛(𝑞1). By Definition 2.2(4), 𝑞0 + 𝑡 witnesses
the compatibility of 𝑞0 and 𝑞1, hence 𝑞 + 𝑡1 P �̌� ∈ �̇�, and thus 𝛼 ∈ 𝑏. �

Altogether, �̇�𝐺 ∈ 𝑉 [𝐻𝑛].

(2) If 𝜅 were to be collapsed, then, by Clause (1), it would have been
collapsed by S𝑛 for some 𝑛 < 𝜔. However, S𝑛 is a notion of forcing of size
< 𝜎𝑛 ≤ 𝜅.

Next, suppose towards a contradiction that 𝜅 is strong limit cardinal,
and yet, for some P-generic filter 𝐺, for some 𝜃 < 𝜅, 𝑉 [𝐺] |= 2𝜃 ≥ 𝜅. For
each 𝑛 < 𝜔, let 𝐻𝑛 be the S𝑛-generic filter induced by 𝜛𝑛 from 𝐺. Using
Clause (1), for every 𝑎 ∈ 𝒫𝑉 [𝐺](𝜃), we fix 𝑛𝑎 < 𝜔 such that 𝑎 ∈ 𝑉 [𝐻𝑛𝑎 ].
I If 𝜅 is regular, then there must exist some 𝑛 < 𝜔 for which |{𝑎 ∈

𝒫𝑉 [𝐺](𝜃) | 𝑛𝑎 = 𝑛}| ≥ 𝜅. However S𝑛 is a notion of forcing of some size
𝜆 < 𝜅, and so by counting nice names, we see it cannot add more than 𝜃𝜆

many subsets to 𝜃, contradicting the fact that 𝜅 is strong limit.
I If 𝜅 is not regular, then Σ is not eventually constant, and cf(𝜅) = 𝜔, so

that, by König’s lemma, 𝑉 [𝐺] |= 2𝜃 ≥ 𝜅+. It follows that exists some 𝑛 < 𝜔

for which |{𝑎 ∈ 𝒫𝑉 [𝐺](𝜃) | 𝑛𝑎 = 𝑛}| > 𝜅, leading to the same contradiction.

(3) Suppose 𝜃, 𝜈 are regular cardinals with 𝜃 < 𝜅 ≤ 𝜈, 𝑓 is a P-name for

a function from 𝜃 to 𝜈, and 𝑝 ∈ 𝑃 is a condition forcing that the image of 𝑓
is cofinal in 𝜈. Denote 𝑛 := ℓ(𝑝) and 𝑠 := 𝜛𝑛(𝑝). By Proposition 3.10, we
may extend 𝑝 and assume that 𝜎𝑛 > 𝜃.
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For all 𝛼 < 𝜃, set 𝐷𝛼 := {𝑟 ≤ 𝑝 | ∃𝛽 < 𝜈, 𝑟 P 𝑓(�̌�) = 𝛽}. As 𝐷𝛼

is 0-open and dense below 𝑝, by combining Lemma 3.13(3) with the 𝜎𝑛-

directed closure of P̊𝜛𝑛
𝑛 (see Definition 3.3(9)), we may recursively define a

≤�⃗�-decreasing sequence of conditions ⟨𝑞𝛼 | 𝛼 ≤ 𝜃⟩ below 𝑝 such that, for
every 𝛼 < 𝜃, 𝑈𝐷𝛼,𝑞𝛼 is dense in S𝑛 ↓ 𝑠. Set 𝑞 := 𝑞𝜃, and note that

𝑈𝐷𝛼,𝑞 := {𝑡 ⪯𝑛 𝑠 | ∃𝑚 < 𝜔[𝑃 𝑞+𝑡𝑛 ⊆ 𝐷𝛼]}
is dense in S𝑛 ↓ 𝑠 for all 𝛼 < 𝜃. In particular, the above sets are non-empty.
For each 𝛼 < 𝜃, let us fix 𝑡𝛼 ∈ 𝑈𝐷𝛼,𝑞 and 𝑚𝛼 < 𝜔 witnessing this. We now

show that |𝑊 (𝑞)| ≥ 𝜈. Let 𝐴𝛼 := {𝛽 < 𝜈 | ∃𝑟 ∈ 𝑃 𝑞+𝑡𝛼𝑚𝛼 [𝑟 P 𝑓(�̌�) = 𝛽]}. By
Lemma 3.6(1), we have

𝐴𝛼 = {𝛽 < 𝜈 | ∃𝑟 ∈𝑊𝑚𝛼(𝑞 + 𝑡𝛼) [𝑟 P 𝑓(�̌�) = 𝛽]}.
Let 𝐴 :=

⋃︀
𝛼<𝜃 𝐴𝛼. Then,

|𝐴| ≤
∑︁

𝑚<𝜔,𝑡⪯𝑛𝑠

|𝑊𝑚(𝑞 + 𝑡)| ≤ max{ℵ0, |𝑆𝑛|} · |𝑊 (𝑞)|.21

Also, by clauses (𝛼) and (𝛽) of Definition 3.3 and our assumption on 𝜈,
max{ℵ0, |𝑆𝑛|} < 𝜎𝑛 < 𝜈. It follows that if |𝑊 (𝑞)| < 𝜈, then |𝐴| < 𝜈, and so

sup(𝐴) < 𝜈. Thus, 𝑞 forces that the range of 𝑓 is bounded below 𝜈, which
leads us to a contradiction. Therefore, |𝑊 (𝑞)| ≥ 𝜈, as desired.

(4) The left-to-right implication is obvious using Definition 3.3(5). Next,
suppose that, for all 𝑝 ∈ 𝑃 , |𝑊 (𝑝)| ≤ 𝜅. Towards a contradiction, sup-
pose that there exist 𝑝 ∈ 𝑃 forcing that 𝜅+ is collapsed. Denote 𝜈 := 𝜅+.
As by assumption 1l P “𝜅 is singular”, this means that 𝑝 P cf(𝜈) < 𝜅,
contradicting Clause (3) of this lemma. �

We end this section recalling the concept of property 𝒟. This notion was
introduced in [PRS20, S2] and usually captures how various forcings satisfy
the Complete Prirky Property (i.e., Clause (7) of Definition 3.3):

Definition 3.15 (Diagonalizability game). Given 𝑝 ∈ 𝑃 , 𝑛 < 𝜔, and a
good enumeration �⃗� = ⟨𝑟𝜉 | 𝜉 < 𝜒⟩ of 𝑊𝑛(𝑝), we say that �⃗� = ⟨𝑞𝜉 | 𝜉 < 𝜒⟩ is
diagonalizable (with respect to �⃗�) iff the two hold:

(a) 𝑞𝜉 ≤0 𝑟𝜉 for every 𝜉 < 𝜒;
(b) there is 𝑝′ ≤0 𝑝 such that for every 𝑞′ ∈ 𝑊𝑛(𝑝′), 𝑞′ ≤0 𝑞𝜉, where 𝜉 is

the unique index to satisfy 𝑟𝜉 = 𝑤(𝑝, 𝑞′).

Besides, if 𝐷 is a dense subset of PℓP(𝑝)+𝑛, aP(𝑝, �⃗�,𝐷) is a game of length 𝜒
between two players I and II, defined as follows:

∙ At stage 𝜉 < 𝜒, I plays a condition 𝑝𝜉 ≤0 𝑝 compatible with 𝑟𝜉, and
then II plays 𝑞𝜉 ∈ 𝐷 such that 𝑞𝜉 ≤ 𝑝𝜉 and 𝑞𝜉 ≤0 𝑟𝜉;

∙ I wins the game iff the resulting sequence �⃗� = ⟨𝑞𝜉 | 𝜉 < 𝜒⟩ is diago-
nalizable.

In the special case that 𝐷 is all of PℓP(𝑝)+𝑛, we omit it, writing aP(𝑝, �⃗�).

21Observe that, for each 𝑡 ⪯𝑛 𝑠, |𝑊 (𝑞 + 𝑡)| ≤ |𝑊 (𝑞)|.
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Definition 3.16 (Property 𝒟). We say that (P, ℓP) has property 𝒟 iff for
any 𝑝 ∈ 𝑃 , 𝑛 < 𝜔 and any good enumeration �⃗� = ⟨𝑟𝜉 | 𝜉 < 𝜒⟩ of 𝑊𝑛(𝑝), I

has a winning strategy for the game aP(𝑝, �⃗�).22

4. Extender Based Prikry Forcing with collapses

In this section we present Gitik’s notion of forcing from [Git19b], and an-
alyze its properties. Gitik came up with this notion of forcing in September
2019, during the week of the 15th International Workshop on Set Theory
in Luminy, after being asked by the second author whether it is possible
to interleave collapses in the Extender Based Prikry Forcing (EBPF) with
long extenders [GM94, S3]. The following theorem summarizes the main
properties of the generic extensions by Gitik’s forcing:

Theorem 4.1 (Gitik). All of the following hold in 𝑉 P:

(1) All cardinals ≥ 𝜅 are preserved;
(2) 𝜅 = ℵ𝜔, 𝜇 = ℵ𝜔+1 and 𝜆 = ℵ𝜔+2;
(3) ℵ𝜔 is a strong limit cardinal;
(4) GCH<ℵ𝜔 , provided that 𝑉 |= GCH<𝜅;
(5) 2ℵ𝜔 = ℵ𝜔+2, hence the SCHℵ𝜔 fails.

For people familiar with the forcing many of the proofs in this section
can be skipped. But since the forcing notion is fairly new, we include the
details of some of its properties for posterity. Also, for us it is important to
verify the existence of various nice projections and reflections properties in
Corollary 4.30 and Lemma 4.32. Unlike the exposition of this forcing from
[Git19b], the exposition here shall not assume the GCH.

Setup 4. Throughout this section our setup will be as follows:

∙ �⃗� = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is a strictly increasing sequence of cardinals;
∙ 𝜅−1 := ℵ0, 𝜅 := sup𝑛<𝜔 𝜅𝑛, 𝜇 := 𝜅+ and 𝜆 := 𝜇+;
∙ 𝜇<𝜇 = 𝜇 and 𝜆<𝜆 = 𝜆;
∙ for each 𝑛 < 𝜔, 𝜅𝑛 is (𝜆+ 1)-strong;
∙ Σ := ⟨𝜎𝑛 | 𝑛 < 𝜔⟩, where, for each 𝑛 < 𝜔, 𝜎𝑛 := (𝜅𝑛−1)

+;23

In particular, we are assuming that, for each 𝑛 < 𝜔, there is a (𝜅𝑛, 𝜆+ 1)-
extender 𝐸𝑛 whose associated embedding 𝑗𝑛 : 𝑉 →𝑀𝑛 is such that 𝑀𝑛 is a
transitive class, 𝜅𝑛𝑀𝑛 ⊆𝑀𝑛, 𝑉𝜆+1 ⊆𝑀𝑛 and 𝑗𝑛(𝜅𝑛) > 𝜆.

For each 𝑛 < 𝜔, and each 𝛼 < 𝜆, set

𝐸𝑛,𝛼 := {𝑋 ⊆ 𝜅𝑛 | 𝛼 ∈ 𝑗𝑛(𝑋)}.

Note that 𝐸𝑛,𝛼 is a non-principal 𝜅𝑛-complete ultrafilter over 𝜅𝑛, provided
that 𝛼 ≥ 𝜅𝑛. Moreover, in the particular case of 𝛼 = 𝜅𝑛, 𝐸𝑛,𝜅𝑛 is also

22In a mild abuse of terminology, we often say that (P, ℓ, 𝑐, �⃗�) has property 𝒟 whenever
the pair (P, ℓ) has property 𝒟.

23In particular, 𝜎0 = ℵ1.
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normal. For ordinals 𝛼 < 𝜅𝑛 the measures 𝐸𝑛,𝛼 are principal so the only
reason to consider them is for a more neat presentation.

For each 𝑛 < 𝜔, we shall consider an ordering ≤𝐸𝑛 over 𝜆, as follows:

Definition 4.2. For each 𝑛 < 𝜔, set

≤𝐸𝑛 := {(𝛽, 𝛼) ∈ 𝜆× 𝜆 | 𝛽 ≤ 𝛼, ∧∃𝑓 ∈ 𝜅𝑛𝜅𝑛 𝑗𝑛(𝑓)(𝛼) = 𝛽}.

It is routine to check that ≤𝐸𝑛 is reflexive, transitive and antisymmetric,
hence (𝜆,≤𝐸𝑛) is a partial order. In case 𝛽 ≤𝐸𝑛 𝛼, we shall fix in advance
a witnessing map 𝜋𝛼,𝛽 : 𝜅𝑛 → 𝜅𝑛. Also, in the special case where 𝛼 = 𝛽, by
convention, 𝜋𝛼,𝛼 =: id. Observe that ≤𝐸𝑛 �(𝜅𝑛 × 𝜅𝑛) is exactly the ∈-order
over 𝜅𝑛 so that when we refer to ≤𝐸𝑛 we will really be speaking about the
restriction of this order to 𝜆 ∖ 𝜅𝑛. The most notable property of the poset
(𝜆,≤𝐸𝑛) is that it is 𝜅𝑛-directed: that is, for every 𝑎 ∈ [𝜆]<𝜅𝑛 there is 𝛼 < 𝜆
such that 𝛽 ≤𝐸𝑛 𝛼 for all 𝛽 ∈ 𝑎. This and other nice features of (𝜆,≤𝐸𝑛) are
proved at the beginning of [Git10, S2] under the unnecessary assumption of
the GCH. A proof without GCH may be found in [?, S10.2].

Remark 4.3. For future reference, it is worth mentioning that all the relevant
properties of (𝜆,≤𝐸𝑛) reflect down to (𝜇,≤𝐸𝑛� 𝜇 × 𝜇). In particular, it is
true that every 𝑎 ∈ [𝜆]<𝜅𝑛 may be enlarged to an 𝑎* such that 𝜅𝑛, 𝜇 ∈ 𝑎*

and 𝑎* ∩ 𝜇 contains a ≤𝐸𝑛-greatest. For details, see [Git10, S2].

4.1. The forcing. Before giving the definition of Gitik’s forcing we shall
first introduce the basic building block modules Q𝑛0 and Q𝑛1. To that effect,
for each 𝑛 < 𝜔, let us fix 𝑠𝑛 : 𝜅𝑛 → 𝜅𝑛 be a map representing 𝜇 in the normal
ultrapower 𝐸𝑛,𝜅𝑛 . Specifically, for each 𝑛 < 𝜔, 𝑗𝑛(𝑠𝑛)(𝜅𝑛) = 𝜇.

Definition 4.4. For each 𝑛 < 𝜔, define Q𝑛1, Q𝑛0 and Q𝑛 as follows:

(0)𝑛 Q𝑛0 := (𝑄𝑛0,≤𝑛0) is the set of 𝑝 := (𝑎𝑝, 𝐴𝑝, 𝑓𝑝, 𝐹 0𝑝, 𝐹 1𝑝, 𝐹 2𝑝), where:
(1) (𝑎𝑝, 𝐴𝑝, 𝑓𝑝) is in the 𝑛0-module 𝑄*

𝑛0 from the Extender Based
Prikry Forcing (EBPF) as defined in [Git10, Definition 2.6].
Moreover, we require that 𝜅𝑛, 𝜇 ∈ 𝑎𝑝 and that 𝑎𝑝 ∩ 𝜇 contains
a ≤𝐸𝑛-greatest element denoted by mc(𝑎𝑝 ∩ 𝜇);24

(2) for 𝑖 < 3, dom(𝐹 𝑖𝑝) = 𝜋mc(𝑎𝑝),mc(𝑎𝑝∩𝜇)[𝐴
𝑝], and for 𝜈 ∈ dom(𝐹 𝑖𝑝),

setting 𝜈0 := 𝜋mc(𝑎𝑝∩𝜇),𝜅𝑛(𝜈), we have:

(a) 𝐹 0𝑝(𝜈) ∈ Col(𝜎𝑛, <𝜈0);
(b) 𝐹 1𝑝(𝜈) ∈ Col(𝜈0, 𝑠𝑛(𝜈0));
(c) 𝐹 2𝑝(𝜈) ∈ Col(𝑠𝑛(𝜈0)

++, <𝜅𝑛).
The ordering ≤𝑛0 is defined as follows: 𝑞 ≤𝑛0 𝑝 iff (𝑎𝑞, 𝐴𝑞, 𝑓 𝑞) ≤Q*

𝑛0

(𝑎𝑝, 𝐴𝑝, 𝑓𝑝) as in [Git10, Definition 2.7], and for each 𝜈 ∈ dom(𝐹 𝑖𝑞),
𝐹 𝑖𝑞(𝜈) ⊇ 𝐹 𝑖𝑝(𝜈 ′), where 𝜈 ′ := 𝜋mc(𝑎𝑞∩𝜇),mc(𝑎𝑝∩𝜇)(𝜈).

(1)𝑛 Q𝑛1 := (𝑄𝑛1,≤𝑛1) is the set of 𝑝 := (𝑓𝑝, 𝜌𝑝, ℎ0𝑝, ℎ1𝑝, ℎ2𝑝), where:

24Recall that (𝑎𝑝, 𝐴𝑝, 𝑓𝑝) ∈ 𝑄*
𝑛0 in particular implies that 𝑎𝑝 contains a ≤𝐸𝑛 -greatest

element, which is typically denoted by mc(𝑎𝑝). Note that since 𝜇 ∈ 𝑎𝑝 then mc(𝑎𝑝) is
always strictly ≤𝐸𝑛 -larger than mc(𝑎𝑝 ∩ 𝜇).
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(1) 𝑓𝑝 is a function from some 𝑥 ∈ [𝜆]≤𝜅 to 𝜅𝑛;
(2) 𝜌𝑝 < 𝜅𝑛 inaccessible;
(3) ℎ0𝑝 ∈ Col(𝜎𝑛, <𝜌

𝑝);
(4) ℎ1𝑝 ∈ Col(𝜌𝑝, 𝑠𝑛(𝜌𝑝));
(5) ℎ2𝑝 ∈ Col(𝑠𝑛(𝜌𝑝)++, <𝜅𝑛).

The ordering ≤𝑛1 is defined as follows: 𝑞 ≤𝑛1 𝑝 iff 𝑓 𝑞 ⊇ 𝑓𝑝, 𝜌𝑝 = 𝜌𝑞,
and for 𝑖 < 3, ℎ𝑖𝑞 ⊇ ℎ𝑖𝑝.

(2)𝑛 Set Q𝑛 := (𝑄𝑛0 ∪ 𝑄𝑛1,≤𝑛) where the ordering ≤𝑛 is defined as
follows: for each 𝑝, 𝑞 ∈ 𝑄𝑛, 𝑞 ≤𝑛 𝑝 iff
(1) either 𝑝, 𝑞 ∈ 𝑄𝑛𝑖, some 𝑖 ∈ {0, 1}, and 𝑞 ≤𝑛𝑖 𝑝, or
(2) 𝑞 ∈ 𝑄𝑛1, 𝑝 ∈ 𝑄𝑛0 and, for some 𝜈 ∈ 𝐴𝑝, 𝑞 ≤𝑛1 𝑝

y⟨𝜈⟩, where

𝑝y⟨𝜈⟩ := (𝑓𝑝 ∪ {⟨𝛽, 𝜋mc(𝑎𝑝),𝛽(𝜈)⟩ | 𝛽 ∈ 𝑎𝑝⟩}, 𝜈0, 𝐹 0𝑝(𝜈), 𝐹 1𝑝(𝜈), 𝐹 2𝑝(𝜈)),

and 𝜈 = 𝜋mc(𝑎𝑝),mc(𝑎𝑝∩𝜇)(𝜈).

Remark 4.5. For each 𝑛 < 𝜔 and all 𝛼 ≥ 𝜅𝑛 we have

{𝜌 < 𝜅𝑛 | (𝜅𝑛−1)
+ < 𝜌 < 𝑠𝑛(𝜌) < 𝜅𝑛 & 𝜌 inaccessible} ∈ 𝐸𝑛,𝛼.

Similarly, for 𝑎 ∈ [𝜆]<𝜅𝑛 as in (1)𝑛 above and 𝐴 ∈ 𝐸𝑛,mc(𝑎),

(⋆) {𝜌 ∈ 𝜋mc(𝑎),mc(𝑎∩𝜇)“𝐴 | |{𝜈 ∈ 𝐴𝑝𝑛 | 𝜈0 = 𝜌0}| ≤ 𝑠𝑛(𝜌0)
+} ∈ 𝐸𝑛,mc(𝑎∩𝜇).

We will only use these measures of the extenders, and by restricting to a
measure one set, we assume that the above is always the case for all 𝜌 < 𝜅𝑛
that we ever consider. Similarly, we may also assume that 𝑠𝑛(𝜌) is regular
(actually the successor of a singular) and that 𝑠𝑛(𝜌𝑝)<𝜌

𝑝
= 𝑠𝑛(𝜌𝑝).

The reason we consider conditions witnessing Clause (⋆) above is related
with the verification of property 𝒟 and CPP (cf. lemmas 4.20 and 4.21).
Essentially, when we describe the moves of I and II we would like to be
able to take lower bounds of the top-most collapsing maps appearing in
conditions played by II. Namely, we would like to take lower bounds of the
ℎ2𝑞𝜉 ’s. Assuming (⋆) we will have that the number of maps that need to be
amalgamated is at most 𝑠𝑛(𝜈0)

+, hence less than the completeness of the
top-most Lèvy collapse Col(𝑠𝑛(𝜈0)

++, < 𝜅𝑛+1).

Remark 4.6. The reason Gitik makes 𝐹 𝑖𝑝𝑛 dependent on the partial extender
𝐸𝑛 � 𝜇 rather than on the full extender 𝐸𝑛 is related with the verification
of the chain condition. Indeed, in that way the triple ⟨𝐹 0𝑝

𝑛 , 𝐹 1𝑝
𝑛 , 𝐹 2𝑝

𝑛 ⟩ will
represent three (partial) collapsing functions as computed in the ultrapower
by 𝐸𝑛 �𝜇. Observe that, from the perspective of 𝑉 , these collapses have size
<𝜇, hence there cannot be 𝜇+-many incompatible conditions. In particular,
this will guarantee that the map given in Definition 4.10 has range 𝐻𝜇.

Having all necessary building blocks, we can now define the poset P.

Definition 4.7. The Extender Based Prikry Forcing with collapses (EBPFC)
is the poset P := (𝑃,≤) defined by the following clauses:

∙ Conditions in 𝑃 are sequences 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ ∈
∏︀
𝑛<𝜔 𝑄𝑛.
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∙ For all 𝑝 ∈ 𝑃 ,
– There is 𝑛 < 𝜔 such that 𝑝𝑛 ∈ 𝑄𝑛0;
– For every 𝑛 < 𝜔, if 𝑝𝑛 ∈ 𝑄𝑛0 then 𝑝𝑚 ∈ 𝑄𝑚0 and 𝑎𝑝𝑛 ⊆ 𝑎𝑝𝑚 ,

for every 𝑚 ≥ 𝑛.
∙ For all 𝑝, 𝑞 ∈ 𝑃 , 𝑝 ≤ 𝑞 iff 𝑝𝑛 ≤𝑛 𝑞𝑛, for every 𝑛 < 𝜔.

Definition 4.8. ℓ : 𝑃 → 𝜔 is defined by letting for all 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩,
ℓ(𝑝) := min{𝑛 < 𝜔 | 𝑝𝑛 ∈ 𝑄𝑛0}.

Notation 4.9. Given 𝑝 ∈ 𝑃 , 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩, we will typically write

𝑝𝑛 = (𝑓𝑝𝑛, 𝜌
𝑝
𝑛, ℎ

0𝑝
𝑛 , ℎ

1𝑝
𝑛 , ℎ

2𝑝
𝑛 ) for 𝑛 < ℓ(𝑝), and 𝑝𝑛 = (𝑎𝑝𝑛, 𝐴

𝑝
𝑛, 𝑓

𝑝
𝑛, 𝐹

0𝑝
𝑛 , 𝐹 1𝑝

𝑛 , 𝐹 2𝑝
𝑛 )

for 𝑛 ≥ ℓ(𝑝). Also, for each 𝑛 ≥ ℓ(𝑝), we shall denote 𝛼𝑝𝑛 := mc(𝑎𝑝𝑛 ∩ 𝜇).

We already have (P, ℓ) and we will eventually check that 1l P �̌� = �̌�+

(Corollary 4.24). Next, we introduce sequences S⃗ = ⟨S𝑛 | 𝑛 < 𝜔⟩ and
�⃗� = ⟨𝜛𝑛 | 𝑛 < 𝜔⟩, and a map 𝑐 : 𝑃 → 𝐻𝜇 such that (P, ℓ, 𝑐, �⃗�) will be a

(Σ, S⃗)-Prikry forcing having property 𝒟.
As in [?, S10.2], using 𝜇𝜅 = 𝜇 and 2𝜇 = 𝜆, we fix a sequence of functions

⟨𝑒𝑖 | 𝑖 < 𝜇⟩ from 𝜆 to 𝜇 such that, for all 𝑥 ∈ [𝜆]𝜅 and every function
𝑒 : 𝑥→ 𝜇, there exists 𝑖 < 𝜇 with 𝑒 ⊆ 𝑒𝑖.

Definition 4.10. For every condition 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ in P, define a
sequence of indices ⟨𝑖(𝑝𝑛) | 𝑛 < 𝜔⟩ as follows:25

𝑖(𝑝𝑛) :=

{︃
min{𝑖 < 𝜇 | 𝑓 ⊆ 𝑒𝑖}, if 𝑛 < ℓ(𝑝);

min{𝑖 < 𝜇 | 𝑒𝑖 � 𝑎𝑝𝑛 = 0 & 𝑒𝑖 � dom(𝑓𝑝𝑛) = 𝑓𝑝𝑛 + 1}, if 𝑛 ≥ ℓ(𝑝).

Define a map 𝑐 : 𝑃 → 𝐻𝜇, by letting for any condition 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩,

𝑐(𝑝) := (ℓ(𝑝), ⟨𝜌𝑝𝑛 | 𝑛 < ℓ(𝑝)⟩, ⟨𝑖(𝑝𝑛) | 𝑛 < 𝜔⟩, ⟨⃗ℎ𝑝𝑛 | 𝑛 < ℓ(𝑝)⟩, ⟨�⃗�𝑝𝑛 | 𝑛 ≥ ℓ(𝑝)⟩),

where ℎ⃗𝑝𝑛 := ⟨ℎ𝑖𝑝𝑛 | 𝑖 < 3⟩ and �⃗�𝑝𝑛 := ⟨𝑗𝑛(𝐹 𝑖𝑝𝑛 )(𝛼𝑝𝑛) | 𝑖 < 3⟩.

Definition 4.11. For each 𝑛 < 𝜔, set

𝑆𝑛 :=

{︃
{1l}, if 𝑛 = 0;

{⟨(𝜌𝑝𝑘, ℎ
0𝑝
𝑘 , ℎ

1𝑝
𝑘 , ℎ

2𝑝
𝑘 ) | 𝑘 < 𝑛⟩ | 𝑝 ∈ 𝑃𝑛}, if 𝑛 ≥ 1.

For 𝑛 ≥ 1 and 𝑠, 𝑡 ∈ 𝑆𝑛, write 𝑠 ⪯𝑛 𝑡 iff there are 𝑝, 𝑞 ∈ 𝑃𝑛 with 𝑝 ≤ 𝑞
witnessing, respectively, that 𝑠 and 𝑡 are in 𝑆𝑛.

Denote S𝑛 := (𝑆𝑛,⪯𝑛) and set S⃗ := ⟨S𝑛 | 𝑛 < 𝜔⟩.

Remark 4.12. Observe that |𝑆𝑛| < 𝜎𝑛. Moreover, for each 𝑠 ∈ 𝑆𝑛 ∖ {1lS𝑛},
S𝑛 ↓ 𝑠 ∼= Col(𝛿,<𝜅𝑛−1)×Q, where Q is a notion of a forcing of size < 𝛿 such
that 𝜎𝑛−1 < 𝛿 < 𝜅𝑛−1. Specifically, if 𝑝 ∈ 𝑃𝑛 is the condition from which 𝑠
arises, then 𝛿 = 𝑠𝑛−1(𝜌

𝑝
𝑛−1)

++ and Q is a product

R× Col(𝜎𝑛−1, <𝜌
𝑝
𝑛−1) × Col(𝜌𝑝𝑛−1, 𝑠𝑛−1(𝜌

𝑝
𝑛−1)),

25Here 0 stands for the constant map with value 0.
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where R is a notion of forcing of size ≤ 𝜅𝑛−2.
26 Also, by combining Easton’s

lemma with a counting of nice names, if the GCH holds below 𝜅, then S𝑛 ↓ 𝑠
preserves this behavior of the power set function for each 𝑠 ∈ 𝑆𝑛 ∖ {1lS𝑛}.

On another note, observe that the the map (𝑞, 𝑠) ↦→ 𝑞 + 𝑠 yields an
isomorphism between (S𝑛 ↓ 𝜛𝑛(𝑝)) × (P𝜛𝑛

𝑛 ↓ 𝑝) and P𝑛 ↓ 𝑝.27

Definition 4.13. For each 𝑛 < 𝜔, define 𝜛𝑛 : 𝑃≥𝑛 → 𝑆𝑛 as follows:

𝜛𝑛(𝑝) :=

{︃
{1l}, if 𝑛 = 0;

⟨(𝜌𝑝𝑘, ℎ
0𝑝
𝑘 , ℎ

1𝑝
𝑘 , ℎ

2𝑝
𝑘 ) | 𝑘 < 𝑛⟩, if 𝑛 ≥ 1.

Set �⃗� := ⟨𝜛𝑛 | 𝑛 < 𝜔⟩.

The next lemma collects some useful properties about the 𝑛0-modules
of EBPFC (i.e, the Q𝑛0’s) and reveals some of their connections with the
corresponding modules of EBPF (i.e, then Q*

𝑛0’s).

Lemma 4.14. Let 𝑛 < 𝜔. All of the following hold:

(1) P𝑛 projects to Q𝑛0, and this latter projects to Q*
𝑛0.

(2) Q*
𝑛0 is 𝜅𝑛-directed-closed, while Q𝑛0 is 𝜎𝑛-directed-closed.

(3) S𝑛 satisfies the (𝜅𝑛−1)-cc.

Proof. (1) The map 𝑝 ↦→ (𝑎𝑝𝑛, 𝐴
𝑝
𝑛, 𝑓

𝑝
𝑛, 𝐹

0𝑝
𝑛 , 𝐹 1𝑝

𝑛 , 𝐹 2𝑝
𝑛 ) is a projection between

P𝑛 and Q𝑛0. Similarly, (𝑎,𝐴, 𝑓, 𝐹 0, 𝐹 1, 𝐹 2) ↦→ (𝑎,𝐴, 𝑓) defines a projection
between Q𝑛0 and Q*

𝑛0.
(2) The argument for the 𝜅𝑛-directed-closedness of Q*

𝑛0 is given in [?,
Lemma 10.2.40]. Let 𝐷 ⊆ Q𝑛0 be a directed set of size <𝜎𝑛 and denote by 𝜚𝑛
the projection between Q𝑛0 and Q*

𝑛0 given in the proof of item (1). Clearly,
𝜚𝑛[𝐷] is a directed subset of Q*

𝑛0 of size <𝜎𝑛, so that we may let (𝑎,𝐴, 𝑓) be
a ≤Q*

𝑛0
-lower bound for it. By ≤Q*

𝑛0
-extending (𝑎,𝐴, 𝑓) we may assume that

𝜅𝑛, 𝜇 ∈ 𝑎 and that 𝑎∩𝜇 contains a ≤𝐸𝑛-greatest element. Set 𝛼 := mc(𝑎∩𝜇).
For each 𝑖 < 3 and each 𝜈 ∈ 𝜋mc(𝑎)𝛼[𝐴], define 𝐹 𝑖(𝜈) :=

⋃︀
𝑝∈𝐷 𝐹

𝑖𝑝(𝜋𝛼,𝛼𝑝(𝜈)).

Finally, (𝑎,𝐴, 𝑓, 𝐹 0, 𝐹 1, 𝐹 2) is a condition in Q𝑛0 extending every 𝑝 ∈ 𝐷.
(3) This is immediate from the definition of S𝑛 (Definition 4.11). �

4.2. EBPFC is (Σ, S⃗)-Prikry. We verify that (P, ℓ, 𝑐, �⃗�) is a (Σ, S⃗)-Prikry
having property 𝒟. To that effect, we go over the clauses of Definition 3.3.

Convention 4.15. For every sequence {𝐴𝑘}𝑖≤𝑘≤𝑗 such that each 𝐴𝑘 is a

subset of 𝜅𝑘, we shall identify
∏︀𝑗
𝑘=𝑖𝐴𝑘 with its subset consisting only of the

sequences that are moreover increasing.

Definition 4.16. Let 𝑝 = ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ ∈ 𝑃 . Define:

∙ 𝑝y∅ := 𝑝;

26In the particular case where 𝑛 = 1 the poset R is trivial.
27In general terms the above map simply defines a projection (see Definition 2.2(4))

but in the particular case of the EBPFC it moreover gives an isomorphism.
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∙ For every 𝜈 ∈ 𝐴𝑝ℓ(𝑝), 𝑝
y⟨𝜈⟩ is the unique condition 𝑞 = ⟨𝑞𝑛 | 𝑛 < 𝜔⟩,

such that for each 𝑛 < 𝜔:

𝑞𝑛 =

{︃
𝑝𝑛, if 𝑛 ̸= ℓ(𝑝)

𝑝ℓ(𝑝)
y⟨𝜈⟩, otherwise.

∙ Inductively, for all𝑚 ≥ ℓ(𝑝) and �⃗� = ⟨𝜈ℓ(𝑝), . . . , 𝜈𝑚, 𝜈𝑚+1⟩ ∈
∏︀𝑚+1
𝑛=ℓ(𝑝)𝐴

𝑝
𝑛,

set 𝑝y�⃗� := (𝑝y�⃗� � (𝑚+ 1))y⟨𝜈𝑚+1⟩.

Fact 4.17. Let 𝑝, 𝑞 ∈ 𝑃 .

∙ 𝑞 ≤0 𝑝 iff ℓ(𝑝) = ℓ(𝑞) and 𝑞 ≤𝑛 𝑝, for each 𝑛 < 𝜔;

∙ 𝑞 ≤ 𝑝 iff there is �⃗� ∈
∏︀ℓ(𝑞)−1
𝑛=ℓ(𝑝)𝐴

𝑝
𝑛 such that 𝑞 ≤0 𝑝y�⃗�;

∙ The sequence �⃗� above is uniquely determined by 𝑞. Specifically, for
each 𝑛 ∈ [ℓ(𝑝), ℓ(𝑞)), 𝜈𝑛 = 𝑓 𝑞𝑛(mc(𝑎𝑝𝑛)).

By the very definition of the EBPFC (Definition 4.7) and the function ℓ
(Definition 4.8), (P, ℓ) is a graded poset, hence (P, ℓ, 𝑐, �⃗�) witnesses Clause (1).
Also, combining Lemma 4.14(2) with the fact that all of the L‘evy collapses
considered are at least ℵ1-closed, Clause (2) follows:

Lemma 4.18. For all 𝑛 < 𝜔, P𝑛 is ℵ1-closed. �

We now verify that the map of Definition 4.10 witnesses Clause (3):

Lemma 4.19. For all 𝑝, 𝑞 ∈ 𝑃 , if 𝑐(𝑝) = 𝑐(𝑞), then 𝑃 𝑝0 ∩ 𝑃 𝑞0 is non-empty.

Proof. Let 𝑝, 𝑞 ∈ 𝑃 and assume that 𝑐(𝑝) = 𝑐(𝑞). By Definition 4.10, we
have ℓ(𝑝) = ℓ(𝑞) and 𝜌𝑝𝑛 = 𝜌𝑞𝑛 for all 𝑛 < ℓ(𝑝). Set ℓ := ℓ(𝑝) and 𝜌𝑛 := 𝜌𝑝𝑛 for

each 𝑛 < ℓ. Also, 𝑐(𝑝) = 𝑐(𝑞) yields ℎ⃗𝑝𝑛 = ℎ⃗𝑞𝑛 for each 𝑛 < ℓ and �⃗�𝑝𝑛 = �⃗�𝑞𝑛,

for each 𝑛 ≥ ℓ. For 𝑛 < ℓ, put ℎ⃗𝑛 := ℎ⃗𝑝𝑛 and denote ℎ⃗𝑛 = (ℎ0𝑛, ℎ
1
𝑛, ℎ

2
𝑛).

We now define a condition 𝑟 witnessing that 𝑃 𝑝0 ∩ 𝑃 𝑞0 is non-empty.
I If 𝑛 < ℓ then 𝑐(𝑝) = 𝑐(𝑞) implies 𝑖 = 𝑖(𝑝𝑛) = 𝑖(𝑞𝑛), and so 𝑓𝑝𝑛 ∪ 𝑓 𝑞𝑛 ⊆ 𝑒𝑖.

Set 𝑟𝑛 := (𝜌𝑛, 𝑓
𝑝
𝑛 ∪ 𝑓 𝑞𝑛, ℎ0𝑛, ℎ1𝑛, ℎ2𝑛). Clearly, 𝑟𝑛 ∈ 𝑄𝑛1.

I If 𝑛 ≥ ℓ, put 𝑎𝑟ℓ−1 := ∅ and argue by recursion as follows: Since
𝑐(𝑝) = 𝑐(𝑞) implies 𝑖 = 𝑖(𝑝𝑛) = 𝑖(𝑞𝑛), arguing as in [?, Lemma 10.2.41] it
follows that 𝑎𝑝𝑛∩dom(𝑓 𝑞𝑛) = 𝑎𝑞𝑛∩dom(𝑓𝑝𝑛) = ∅. This implies that (𝑎𝑝𝑛, 𝐴

𝑝
𝑛, 𝑓

𝑝
𝑛)

and (𝑎𝑞𝑛, 𝐴
𝑞
𝑛, 𝑓

𝑞
𝑛) are two compatible conditions in Q*

𝑛0. Let (𝑎𝑟𝑛, 𝐴
𝑟
𝑛, 𝑓

𝑟
𝑛) be in

Q*
𝑛0 witnessing this and such that 𝑎𝑟𝑛−1 ⊆ 𝑎𝑟𝑛. As usual, we may assume that

𝜅𝑛, 𝜇 ∈ 𝑎𝑟𝑛 and that 𝑎𝑟𝑛∩𝜇 has a ≤𝐸𝑛-maximal element 𝛼𝑟𝑛 (see Remark 4.3).

Let us now define the 𝐹 -part of 𝑟𝑛. Since �⃗�𝑝𝑛 = �⃗�𝑞𝑛, for each 𝑖 < 3,

𝑗𝑛(𝐹 𝑖𝑝𝑛 )(𝛼𝑝𝑛) = 𝑗𝑛(𝐹 𝑖𝑞𝑛 )(𝛼𝑞𝑛). Also 𝑗𝑛(𝐹 𝑖𝑝𝑛 )(𝛼𝑝𝑛) = 𝑗𝑛(𝐹 𝑖𝑝𝑛 ∘ 𝜋𝛼𝑟𝑛 ,𝛼𝑝𝑛
)(𝛼𝑟𝑛).

Similarly, the same applies for 𝑗𝑛(𝐹 𝑞𝑖𝑛 )(𝛼𝑞𝑛). Thus,

∀𝐸𝑛,𝛼𝑟𝑛 𝜈 (𝐹 𝑖𝑝𝑛 (𝜋𝛼𝑟𝑛 ,𝛼𝑝𝑛
(𝜈)) = 𝐹 𝑖𝑞𝑛 (𝜋𝛼𝑟𝑛 ,𝛼𝑞𝑛

(𝜈)))

holds. Shrinking𝐴𝑟𝑛 appropriately, we define 𝐹 𝑖𝑟𝑛 with domain 𝜋mc(𝑎𝑟𝑛),𝛼𝑟𝑛
[𝐴𝑟𝑛]

as 𝜈 ↦→ 𝐹 𝑖𝑝𝑛 (𝜋𝛼𝑟𝑛 ,𝛼𝑝𝑛
(𝜈)). Clearly, 𝑟𝑛 := (𝑎𝑟𝑛, 𝐴

𝑟
𝑛, 𝑓

𝑟
𝑛, 𝐹

0𝑟
𝑛 , 𝐹 1𝑟

𝑛 , 𝐹 2𝑟
𝑛 ) ∈ 𝑄𝑛0

and it is routine to check that 𝑟𝑛 ≤𝑛0 𝑝𝑛, 𝑞𝑛.
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Finally, putting 𝑟 := ⟨𝑟𝑛 | 𝑛 < 𝜔⟩ we get a condition in P witnessing that
the set 𝑃 𝑝0 ∩ 𝑃 𝑞0 is non-empty. �

The verification of Clauses (4), (5) and (6) is the same as in [?, Lemma
10.2.45, 10.2.46 and 10.2.47], respectively. It is worth saying that regarding
Clause (5) we actually have that |𝑊 (𝑝)| ≤ 𝜅 for each 𝑝 ∈ 𝑃 .

We now show that (P, ℓ) has property 𝒟 and that it satisfies Clause (7).

Lemma 4.20. (P, ℓ) has property 𝒟.

Proof. Let 𝑝 ∈ 𝑃 , 𝑛 < 𝜔 and �⃗� be a good enumeration of 𝑊𝑛(𝑝). Our aim
is to show that I has a winning strategy in the game aP(𝑝, �⃗�). To enlighten
the exposition we just give details for the case when 𝑛 = 1. The general
argument can be composed using the very same ideas.

Write 𝑝 = ⟨(𝑓𝑛, 𝜌𝑛, ℎ0𝑛, ℎ1𝑛, ℎ2𝑛) | 𝑛 < ℓ⟩a⟨(𝑎𝑛, 𝐴𝑛, 𝑓𝑛, 𝐹 0
𝑛 , 𝐹

1
𝑛 , 𝐹

2
𝑛) | 𝑛 ≥ ℓ⟩.

By Fact 4.17, we can identify �⃗� with ⟨𝜈𝜉 | 𝜉 < 𝜅ℓ⟩, a good enumeration
of 𝐴ℓ. Specifically, for each 𝜉 < 𝜅ℓ we have that 𝑟𝜉 = 𝑝y⟨𝜈𝜉⟩. Using this
enumeration we define a sequence ⟨(𝑝𝜉, 𝑞𝜉) | 𝜉 < 𝜅ℓ⟩ of moves in aP(𝑝, �⃗�).

To begin with, I plays 𝑝0 := 𝑝 and in response II plays some 𝑞0 ≤0 𝑟0
with 𝑞0 ≤ 𝑝0. Note that this move is possible, as 𝑝0 and 𝑟0 are compatible.

Suppose by induction that we have defined a sequence ⟨(𝑝𝜂, 𝑞𝜂) | 𝜂 < 𝜉⟩
of moves in aP(𝑝, �⃗�) which moreover satisfies the following:

(1) For each 𝑛 < ℓ the following hold:

(a) for all 𝜂 < 𝜉, 𝜌
𝑝𝜉
𝑛 = 𝜌𝑛, ℎ

0𝑝𝜉
𝑛 = ℎ0𝑛, ℎ

1𝑝𝜉
𝑛 = ℎ1𝑛, ℎ

2𝑝𝜉
𝑛 = ℎ2𝑛;

(b) for all 𝜁 < 𝜂 < 𝜉, 𝑓
𝑞𝜁
𝑛 ⊆ 𝑓

𝑝𝜂
𝑛 ;

(2) For all 𝜁 < 𝜂 < 𝜉 and 𝑛 > ℓ, (𝑞𝜂)𝑛 ≤𝑛0 (𝑝𝜂)𝑛 ≤𝑛0 (𝑞𝜁)𝑛;
(3) For all 𝜂 < 𝜉:

(a) 𝑎
𝑝𝜉
ℓ = 𝑎ℓ, 𝐴

𝑝𝜉
ℓ = 𝐴ℓ, 𝐹

0𝑝𝜉
ℓ = 𝐹 0

ℓ and 𝐹
1𝑝𝜉
ℓ = 𝐹 1

ℓ ;

(b) for each 𝜁 < 𝜂, if (𝜈𝜁)0 = (𝜈𝜂)0 then ℎ
2𝑞𝜁
ℓ ⊆ ℎ

2𝑞𝜂
ℓ .

Let us show how to define the 𝜉th move of I:

Successor case: Suppose 𝜉 = 𝜂+ 1. Then put 𝑝𝜉 := ⟨(𝑝𝜉)𝑛 | 𝑛 < 𝜔⟩, where

(𝑝𝜉)𝑛 :=

⎧⎪⎨⎪⎩
(𝑓
𝑞𝜂
𝑛 , 𝜌𝑛, ℎ

0
𝑛, ℎ

1
𝑛, ℎ

2
𝑛), if 𝑛 < ℓ;

(𝑎𝑛, 𝐴𝑛, 𝑓
𝑞𝜂
𝑛 ∖ 𝑎𝑛, 𝐹 0

𝑛 , 𝐹
1
𝑛 , 𝐹

2𝜉), if 𝑛 = ℓ;

(𝑞𝜂)𝑛, if 𝑛 > ℓ.

Here 𝐹 2𝜉 denotes the map with domain 𝜋mc(𝑎ℓ),𝛼𝑝ℓ
“𝐴ℓ defined as

𝐹 𝜉,2(𝜈) :=

{︃
𝐹 2
ℓ (𝜈) ∪

⋃︀
{ℎ𝑞𝜁 ,2ℓ | 𝜁 < 𝜉, (𝜈𝜁)0 = (𝜈𝜉)0}, if 𝜈 = 𝜈𝜉;

𝐹 2
ℓ (𝜈), otherwise.

By Clauses (3) of the induction hypothesis and our comments in Remark 4.5,
𝐹 2𝜉 is a function. A moment’s reflection makes clear that 𝑝𝜉 is a condition
in P witnessing (1) and (3)(a) above. Also, 𝑝𝜉 ≤0 𝑝 and 𝑝𝜉 is compatible

with 𝑟𝜉, hence it is a legitimate move for I.28 In response, II plays 𝑞𝜉 ≤0 𝑟𝜉

28Note that 𝑝𝜉
y⟨𝜈𝜉⟩ ≤ 𝑝𝜉, 𝑟𝜉.
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such that 𝑞𝜉 ≤ 𝑝𝜉. In particular, for each 𝑛 > ℓ, (𝑞𝜉)𝑛 ≤𝑛0 (𝑝𝜉)𝑛 ≤𝑛0 (𝑞𝜂)𝑛,

and also 𝐹 2𝜉(𝜈𝜉) ⊆ ℎ
2𝑞𝜉
ℓ . This combined with the induction hypothesis yield

Clause (2) and (3)(b), which completes the successor case.

Limit case: In the limit case we put 𝑝𝜉 := ⟨(𝑝𝜉)𝑛 | 𝑛 < 𝜔⟩, where

(𝑝𝜉)𝑛 :=

⎧⎪⎨⎪⎩
(
⋃︀
𝜂<𝜉 𝑓

𝑞𝜂
𝑛 , 𝜌𝑛, ℎ

0
𝑛, ℎ

1
𝑛, ℎ

2
𝑛), if 𝑛 < ℓ;

(𝑎𝑛, 𝐴𝑛,
⋃︀
𝜂<𝜉(𝑓

𝑞𝜂
𝑛 ∖ 𝑎𝑛), 𝐹 0

𝑛 , 𝐹
1
𝑛 , 𝐹

2𝜉), if 𝑛 = ℓ;

(𝑞*𝜉 )𝑛, if 𝑛 > ℓ.

Here, 𝐹 2𝜉 is defined as before and (𝑞*𝜉 )𝑛 is a lower bound for the sequence

⟨(𝑝𝜂)𝑛 | 𝜂 < 𝜉⟩. Note that this choice is possible because the orderings ≤𝑛0

are 𝜎ℓ+1-directed-closed. Once again, 𝑝𝜉 is a legitimate move for I and, in
response, II plays 𝑞𝜉. It is routine to check that (1)–(3) above hold.

After this process we get a sequence ⟨(𝑝𝜉, 𝑞𝜉) | 𝜉 < 𝜅ℓ⟩. We next show
how to form a condition 𝑝* ≤0 𝑝 diagonalizing ⟨𝑞𝜉 | 𝜉 < 𝜅ℓ⟩.

Note that by shrinking 𝐴ℓ to some 𝐴′
ℓ we may assume that there are

maps ⟨(ℎ*0𝑛 , ℎ*1𝑛 , ℎ*2𝑛 ) | 𝑛 < ℓ⟩ such that ℎ
𝑖𝑞𝜉
𝑛 = ℎ*𝑖𝑛 for all 𝜈𝜉 ∈ 𝐴′

ℓ and 𝑖 < 3.

Next, define a map 𝑡 with domain 𝐴′
ℓ such that 𝑡(𝜈) := ⟨ℎ0𝑞𝜈ℓ , ℎ1𝑞𝜈ℓ ⟩.29 Since

𝑗ℓ(𝑡)(mc(𝑎ℓ)) ∈ 𝑉
𝑀𝐸ℓ
𝜅+1 we can argue as in [Git19b, Claim 1] that there is

𝛼 < 𝜇 and a map 𝑡′ such that 𝑗ℓ(𝑡)(mc(𝑎ℓ)) = 𝑗ℓ(𝑡
′)(𝛼). Now let 𝑎*ℓ be such

that 𝑎ℓ ∪ {𝛼} ⊆ 𝑎*ℓ witnessing Clause (1) of Definition 4.4(0)𝑛. Then,

𝐴 := {𝜈 < 𝜅ℓ | 𝑡 ∘ 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)(𝜈) = 𝑡′ ∘ 𝜋mc(𝑎*ℓ∩𝜇),𝛼 ∘ 𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)(𝜈)}

is 𝐸ℓ,mc(𝑎*ℓ )
-large. Set 𝐴*

ℓ := 𝐴 ∩ 𝜋−1
mc(𝑎*ℓ ),mc(𝑎ℓ)

𝐴′
ℓ and

𝑡 := (𝑡′ ∘ 𝜋mc(𝑎*ℓ∩𝜇),𝛼) � 𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)“𝐴
*
ℓ .

Note that 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)“𝐴
*
ℓ ⊆ 𝐴′

ℓ ⊆ 𝐴ℓ. Also, for each 𝜈 ∈ 𝐴*
ℓ ,

𝑡(𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)(𝜈)) = 𝑡(𝜈) = ⟨ℎ0𝑞𝜈ℓ , ℎ1𝑞𝜈ℓ ⟩,

where 𝜈 := 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)(𝜈). For each 𝑖 < 2, define a map 𝐹 *,𝑖
ℓ with domain

𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)“𝐴
*
ℓ , such that for each 𝜈 ∈ 𝐴*

ℓ ,

𝐹 *,𝑖
ℓ (𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)(𝜈)) := ℎ𝑖𝑞𝜈ℓ .

Similarly, define 𝐹 *,2
ℓ by taking lower bounds over the stages of the inductive

construction mentioning ordinals 𝜈𝜂 ∈ 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)“𝐴
*
ℓ ; i.e.,

𝐹 *,2
ℓ (𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)(𝜈)) :=

⋃︁
{ℎ2𝑞𝜈𝜂 | 𝜈𝜂 ∈ 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)“𝐴

*
ℓ , (¯̃𝜈)0 = (𝜈𝜂)0}.

29In a slight abuse of notation, here we are identifying 𝑞𝜈 with 𝑞𝜉, where 𝜈 = 𝜈𝜉.
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Next, define 𝑝* := ⟨𝑝*𝑛 | 𝑛 < 𝜔⟩, where

𝑝*𝑛 :=

⎧⎪⎨⎪⎩
(
⋃︀
𝜉<𝜅ℓ

𝑓
𝑞𝜉
𝑛 , 𝜌𝑛, ℎ

*0
𝑛 , ℎ

*1
𝑛 , ℎ

*2
𝑛 ), if 𝑛 < ℓ;

(𝑎*𝑛, 𝐴
*
𝑛, 𝑓

𝑝
𝑛 ∪

⋃︀
𝜉<𝜅ℓ

(𝑓
𝑞𝜂
𝑛 ∖ 𝑎*𝑛), 𝐹 *0

𝑛 , 𝐹 *1
𝑛 , 𝐹 *2

𝑛 ), if 𝑛 = ℓ;

𝑞*𝑛, if 𝑛 > ℓ.

and 𝑞*𝑛 is a ≤𝑛0-lower bound for ⟨(𝑞𝜉)𝑛 | 𝜉 < 𝜅ℓ⟩.

Claim 4.20.1. 𝑝* is a condition in P diagonalizing ⟨𝑞𝜉 | 𝜉 < 𝜅ℓ⟩.

Proof. Clearly, 𝑝* ∈ 𝑃 and it is routine to check that 𝑝* ≤0 𝑝.
Let 𝑠 ∈ 𝑊1(𝑝

*) and 𝜈 ∈ 𝐴*
ℓ be with 𝑠 = 𝑝*y⟨𝜈⟩. Since 𝜋mc(𝑎*ℓ ),mc(𝑎ℓ)“𝐴

*
ℓ

is contained in 𝐴ℓ there is some 𝜉 < 𝜅ℓ such that 𝜈 = 𝜈𝜉. Note that
𝑤(𝑝, 𝑠) = 𝑝y⟨𝜈𝜉⟩, hence we need to prove that 𝑝*y⟨𝜈⟩ ≤0 𝑞𝜉. Note that for

this it is enough to show that ℎ
𝑖𝑞𝜉
ℓ ⊆ 𝐹 *𝑖

ℓ (𝜋mc(𝑎*ℓ ),mc(𝑎*ℓ∩𝜇)(𝜈)) for 𝑖 < 3. And,

of course, this follows from our definition of 𝐹 *𝑖
ℓ and the fact that 𝜈 = 𝜈𝜉. �

The above shows that I has a winning strategy for the game aP(𝑝, �⃗�). �

Lemma 4.21. (P, ℓ) has the CPP.

Proof. Fix 𝑝 ∈ 𝑃 , 𝑛 < 𝜔 and 𝑈 a 0-open set. Set ℓ := ℓ(𝑝).

Claim 4.21.1. There is 𝑞 ≤0 𝑝 such that if 𝑟 ∈ 𝑃 𝑞 ∩ 𝑈 then 𝑤(𝑞, 𝑟) ∈ 𝑈 .

Proof. For each 𝑛 < 𝜔 and a good enumeration �⃗� := ⟨𝑟𝑛𝜉 | 𝜉 < 𝜒⟩ of 𝑊𝑛(𝑝)

appeal to Lemma 4.20 and find 𝑝𝑛 ≤0 𝑝 such that 𝑝𝑛 diagonalizes a sequence
⟨𝑞𝑛𝜉 | 𝜉 < 𝜒⟩ of moves of II which moreover satisfies

𝑃
𝑟𝑛𝜉
0 ∩ 𝑈 ̸= ∅ =⇒ 𝑞𝑛𝜉 ∈ 𝑈.

Appealing iteratively to Lemma 4.20 we arrange ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ to be ≤0-
decreasing, and by Definition 3.32 we find 𝑞 ≤0 𝑝 a lower bound for it.

Let 𝑟 ≤ 𝑞 be in 𝐷 and set 𝑛 := ℓ(𝑟) − ℓ(𝑞). Then, 𝑟 ≤𝑛 𝑝𝑛 and so
𝑟 ≤0 𝑤(𝑝𝑛, 𝑟) ≤0 𝑞𝑛𝜉 for some 𝜉. This implies that 𝑞𝑛𝜉 ∈ 𝑈 . Finally, since

𝑤(𝑞, 𝑟) ≤0 𝑤(𝑝𝑛, 𝑟) ≤0 𝑞𝑛𝜉 we infer from 0-openess of 𝑈 that 𝑤(𝑞, 𝑟) ∈ 𝑈 . �

Let 𝑞 ≤0 𝑝 be as in the conclusion of Claim 4.21.1. We define by induction
a ≤0-decreasing sequence of conditions ⟨𝑞𝑛 | 𝑛 < 𝜔⟩ such that for each 𝑛 < 𝜔

(⋆)𝑛 𝑊𝑛(𝑞𝑛) ⊆ 𝑈 or 𝑊𝑛(𝑞𝑛) ∩ 𝑈 = ∅.
The cases 𝑛 ≤ 1 are easily handled and the cases 𝑛 ≥ 3 are similar to the
case 𝑛 = 2. So, let us simply describe how do we proceed in this latter case.
Suppose that 𝑞1 has been defined. For each 𝜈 ∈ 𝐴𝑞1ℓ , define

𝐴+
𝜈 := {𝛿 ∈ 𝐴𝑞1ℓ+1 | 𝑞1

y⟨𝜈, 𝛿⟩ ∈ 𝑈} and 𝐴−
𝜈 := 𝐴𝑞1ℓ+1 ∖𝐴

+
𝜈 .

If 𝐴+
𝜈 is large then set 𝐴𝜈 := 𝐴+

𝜈 .30 Otherwise, define 𝐴𝜈 := 𝐴−
𝜈 . Put

𝐴+ := {𝜈 ∈ 𝐴𝑞1ℓ | 𝐴𝜈 = 𝐴+
𝜈 }, and 𝐴− := {𝜈 ∈ 𝐴𝑞1ℓ | 𝐴𝜈 = 𝐴−

𝜈 }. If 𝐴+ is

30More explicitly, 𝐸ℓ+1,mc(𝑎
𝑞1
ℓ+1

)-large.
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large we let 𝐴ℓ := 𝐴+ and otherwise 𝐴ℓ := 𝐴−. Finally, let 𝑞2 ≤0 𝑞1 be such
that 𝐴𝑞2ℓ := 𝐴ℓ and 𝐴𝑞2ℓ+1 :=

⋂︀
𝜈∈𝐴𝑞1

ℓ
𝐴𝜈 Then, 𝑞2 witnesses (⋆)2.

Once we have defined ⟨𝑞𝑛 | 𝑛 < 𝜔⟩, let 𝑞𝜔 be a ≤0-lower bound for it
(cf. Definition 3.3(2)). It is routine to check that, for each 𝑛 < 𝜔, the
condition 𝑞𝜔 witnesses the alternative (⋆)𝑛, hence it is as desired. �

Let us dispose with the verification of Clauses (8) and (9):

Lemma 4.22. For all 𝑛 < 𝜔, the map 𝜛𝑛 is a nice projection from P≥𝑛 to
S𝑛 such that, for all 𝑘 ≥ 𝑛, 𝜛𝑛 � P𝑘 is again a nice projection to S𝑛.

Moreover, the sequence of nice projections �⃗� is coherent.31

Proof. Fix some 𝑛 < 𝜔. By definition, 𝜛𝑛(1lP) = 1lS𝑛 and it is not hard to
check that it is order-preserving. Let 𝑝 ∈ 𝑃≥𝑛 and 𝑠 ⪯𝑛 𝜛𝑛(𝑝).

Then 𝑠 = ⟨(𝜌𝑝𝑘, ℎ
0
𝑘, ℎ

1
𝑘, ℎ

2
𝑘) | 𝑘 < 𝑛⟩, and we define 𝑟 := ⟨𝑟𝑘 | 𝑘 < 𝜔⟩ as

𝑟𝑘 :=

{︃
(𝜌𝑝𝑘, 𝑓

𝑝
𝑘 , ℎ

0
𝑘, ℎ

1
𝑘, ℎ

2
𝑘), if 𝑘 < 𝑛;

𝑝𝑘, otherwise.

It is not hard to check that 𝑟 ≤0 𝑝 and 𝜛𝑛(𝑟) = 𝑠. Actually, 𝑟 is the greatest
such condition, hence 𝑟 = 𝑝+ 𝑠. This yields Clause (3) of Definition 2.2.

For the verification of Clause (4) of Definition 2.2, let 𝑞 ≤0 𝑝 + 𝑠 and
define a sequence 𝑝′ := ⟨𝑝′𝑛 | 𝑛 < 𝜔⟩ as follows:

𝑝′𝑘 :=

{︃
(𝜌𝑝𝑘, 𝑓

𝑝
𝑘 , ℎ

0𝑝
𝑘 , ℎ

1𝑝
𝑘 , ℎ

2𝑝
𝑘 ), if 𝑘 < 𝑛;

𝑞𝑘, otherwise.

Note that 𝑝′ ∈ 𝑃 and 𝑝′ +𝜛𝑛(𝑞) = 𝑞. Thus, Clause (4) follows.
Altogether, the above shows that𝜛𝑛 is an exact nice projection. Similarly,

one shows that 𝜛𝑛 � P𝑘 is a nice projection for each 𝑘 ≥ 𝑛. Finally, the
moreover part of the lemma follows from the definition of 𝜛𝑛 and the fact

that 𝑊 (𝑝) = {𝑝y�⃗� | �⃗� ∈
∏︀ℓ(𝑝)+|�⃗�|−1
𝑘=ℓ(𝑝) 𝐴𝑝𝑘}. �

Lemma 4.23. For each 𝑛 < 𝜔, P𝜛𝑛
𝑛 is 𝜎𝑛-directed-closed.

32

Proof. Since P𝜛0
0 = {1l} the result is clearly true for 𝑛 = 0.

Let 𝑛 ≥ 1 and 𝐷 ⊆ P𝜛𝑛
𝑛 be a directed set of size <𝜎𝑛. By definition,

𝜛𝑛[𝐷] = {⟨(𝜌𝑝𝑘, ℎ
0𝑝
𝑘 , ℎ

1𝑝
𝑘 , ℎ

2𝑝
𝑘 ) | 𝑘 < 𝑛⟩},

for some (all) 𝑝 ∈ 𝐷. By taking intersection of the measure one sets and
unions on the other components of the conditions of 𝐷 one can easily form
a condition 𝑞 which is a ≤�⃗�-lower bound fo 𝐷. �

Finally, the proof of the next is identical to [?, Corollary 10.2.53].

Corollary 4.24. 1lP P �̌� = 𝜅+. �

31See Definition 3.7.
32In particular, taking P̊𝑛 := P𝑛 Clause (9) follows.



SIGMA-PRIKRY FORCING III 29

Combining all the previous lemmas we finally arrive at the desired result:

Corollary 4.25. (P, ℓ, 𝑐, �⃗�) is a (Σ, S⃗)-Prikry forcing that has property 𝒟.
Moreover, the sequence �⃗� is coherent. �

4.3. EBPFC is suitable for reflection. In this section we show that
(P𝑛,S𝑛, 𝜛𝑛) is suitable for reflection with respect to a relevant sequence of
cardinals. Our setup will be the same as the one from page 19 and we will
also rely on the notation established in page 22. The main result of the
section is Corollary 4.30, which will be preceded by a series of technical
lemmas. The first one is essentially due to A. Sharon:

Lemma 4.26 ([Sha05]). For each 𝑛 < 𝜔, 𝑉 Q
*
𝑛0 |= |𝜇| = cf(𝜇) = 𝜅𝑛.

Proof. By Lemma 4.14, Q*
𝑛0 preserves cofinalities ≤𝜅𝑛, and by the Linked0-

property [?, Lemma 10.2.41] it preserves cardinals ≥𝜇+.
Next we show that Q*

𝑛0 collapses 𝜇 to 𝜅𝑛. For each condition 𝑝 ∈ Q*
𝑛0,

denote 𝑝 := (𝑎𝑝, 𝐴𝑝, 𝑓𝑝). Let 𝐺 be Q*
𝑛0-generic and set 𝑎 :=

⋃︀
𝑝∈𝐺 𝑎

𝑝. By

a density argument, otp(𝑎 ∩ 𝜇) = 𝜅𝑛, and so 𝜇 is collapsed. Finally, by a
result of Shelah, this implies that 𝑉 Q

*
𝑛0 |= cf(|𝜇|) = cf(𝜇).33 �

Lemma 4.27. For each 𝑛 < 𝜔, 𝑉 Q𝑛0 |= |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+.

Proof. For each 𝑝 ∈ 𝑄𝑛0, 𝐹
0𝑝, 𝐹 1𝑝 and 𝐹 2𝑝 respectively represent conditions

in Col(𝜎𝑛, <𝜅𝑛)𝑀
*
𝑛 , Col(𝜅𝑛, 𝜅

+)𝑀
*
𝑛 and Col(𝜅+3, <𝑗𝑛(𝜅𝑛))𝑀

*
𝑛 , where 𝑀*

𝑛
∼=

Ult(𝑉,𝐸𝑛 � 𝜇). Also, observe that the first of these forcings is nothing but
Col(𝜎𝑛, <𝜅𝑛)𝑉 .34 Set 𝐶𝑛 := {⟨𝐹 1𝑝, 𝐹 2𝑝⟩ | 𝑝 ∈ 𝑄𝑛0} and define ⊑ as follows:

⟨𝐹 1𝑝, 𝐹 2𝑝⟩ ⊑ ⟨𝐹 1𝑞, 𝐹 2𝑞⟩ iff ∀𝑖 ∈ {1, 2} 𝑗𝑛(𝐹 𝑖𝑝)(𝛼𝑝) ⊇ 𝑗𝑛(𝐹 𝑖𝑞)(𝛼𝑞).

Clearly, ⊑ is transitive, so that C𝑛 := (𝐶𝑛,⊑) is a forcing poset. For each
condition 𝑐 in C𝑛 let us denote by 𝛼𝑐 the ordinal 𝛼𝑝𝑐 relative to a condition
𝑝𝑐 in Q𝑛0 witnessing that 𝑐 ∈ 𝐶𝑛. The following is a routine verification:

Claim 4.27.1. C𝑛 is 𝜅𝑛-directed closed. Furthermore, if 𝐷 ⊆ C𝑛 is a
directed set of size <𝜅𝑛 and 𝛼 < 𝜇 is ≤𝐸𝑛-above all {𝛼𝑐 | 𝑐 ∈ 𝐷}. Then,
there is ⊑-lower bound ⟨𝐹 1, 𝐹 2⟩ for 𝐷 with dom(𝐹 1) = dom(𝐹 2) ∈ 𝐸𝑛,𝛼.

Let 𝐺 be a Q𝑛0-generic filter over 𝑉 and denote by 𝐺* the Q*
𝑛0-generic

induced by 𝐺 and the projection 𝜚𝑛 of Lemma 4.14(1). By Lemma 4.26,
𝑉 [𝐺*] |= |𝜇| = cf(𝜇) = 𝜅𝑛, hence it lefts to check that 𝜅𝑛 is preserved and
turned into (𝜎𝑛)+. We prove this in two steps, being the proof of the first
one a routine verification.

Claim 4.27.2. The map 𝑒 : Q𝑛0/𝐺* → Col(𝜎𝑛, <𝜅𝑛)𝑉 ×C𝑛 defined in 𝑉 [𝐺*]
by 𝑝 ↦→ ⟨𝑗𝑛(𝐹 0𝑝)(𝛼𝑝), ⟨𝐹 1𝑝, 𝐹 2𝑝⟩⟩ is a dense embedding.

Claim 4.27.3. 𝑉 [𝐺] |= |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+.

33For Shelah’s theorem, see e.g. [CFM01, Fact 4.5].
34Here we use that 𝑉𝜅𝑛 ⊆𝑀*

𝑛.
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Proof. Since Q*
𝑛0 is 𝜅𝑛-directed closed, Col(𝜎𝑛, <𝜅𝑛)𝑉 = Col(𝜎𝑛, <𝜅𝑛)𝑉 [𝐺*].

Note that C𝑛 is still 𝜅𝑛-directed closed over 𝑉 [𝐺*] and that in any generic
extension by Col(𝜎𝑛, <𝜅𝑛)𝑉 over 𝑉 [𝐺*], “|𝜇| = 𝜅𝑛 = (𝜎𝑛)+” holds.

Appealing to Easton’s lemma, C𝑛 is 𝜅𝑛-distributive in any extension of
𝑉 [𝐺*] by Col(𝜎𝑛, <𝜅𝑛)𝑉 . Thus, forcing with Col(𝜎𝑛, <𝜅𝑛)𝑉 × C𝑛 (over
𝑉 [𝐺*]) yields a generic extension where “|𝜇| = 𝜅𝑛 = (𝜎𝑛)+” holds. Since
(𝜇+)𝑉 is preserved, a theorem of Shelah (see [CFM01, Fact 4.5]) yields
“ cf(𝜇) = cf(|𝜇|)” in the above generic extension. Thus, Col(𝜎𝑛, <𝜅𝑛)𝑉 ×C𝑛
forces (over 𝑉 [𝐺*]) that “|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+” holds. The result now
follows using Claim 4.27.2, as it in particular implies that Col(𝜎𝑛, <𝜅𝑛)𝑉×C𝑛
and Q𝑛0/𝐺* are forcing equivalent over 𝑉 [𝐺*]. �

This completes the proof. �

Lemma 4.28. For all non-zero 𝑛 < 𝜔,
∏︀
𝑖<𝑛Q𝑖1 is isomorphic to a product

of S𝑛 with some 𝜇-directed-closed forcing.

Proof. The map 𝑝 ↦→ ⟨⟨(𝜌𝑝𝑖 , ℎ0𝑝𝑖 , ℎ1𝑝𝑖 , ℎ2𝑝𝑖) | 𝑖 < 𝑛⟩⟩, ⟨𝑓𝑝𝑖⟩𝑖<𝑛⟩ yields the
desired isomorphism. �

Lemma 4.29. For each 𝑛 < 𝜔, 𝑉 P𝑛 |= |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+.

Proof. Observe that P𝑛 is a dense subposet of
∏︀
𝑖<𝑛Q𝑖1 ×

∏︀
𝑖≥𝑛Q𝑖0, hence

both forcing produce the same generic extension. By virtue of Lemma 4.27
we have 𝑉 Q𝑛0 |= |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+. Also, Q𝑛0 is 𝜎𝑛-directed-closed,
hence Easton’s lemma, Lemma 4.14(3) and Lemma 4.28 combined imply
that Q𝑛0 forces

∏︀
𝑖<𝑛Q𝑖1 to be a product of a (𝜅𝑛−1)-cc forcing times a 𝜅𝑛-

distributive forcing. Similarly, Q𝑛0 forces
∏︀
𝑖>𝑛Q𝑖0 to be 𝜅𝑛-distributive.

Thereby, forcing with
∏︀
𝑖<𝑛Q𝑖1 ×

∏︀
𝑖>𝑛Q𝑖0 over 𝑉 Q𝑛0 preserves the above

cardinal configuration and thus the result follows. �

As a consequence of the above we get the main result of the section:

Corollary 4.30. For each 𝑛 ≥ 2, (P𝑛,S𝑛, 𝜛𝑛) is suitable for reflection with
respect to the sequence ⟨𝜎𝑛−1, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩.
Proof. We go over the clauses of Definition 2.10. Clause (1) is obvious.
Clause (2) follows from Lemma 4.22 and Lemma 4.23. Clause (4) follows
from the comments in Remark 4.12. For Clause (3), note that P𝑛 forces
“|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+” (Lemma 4.29), hence the last paragraph of
Remark 4.12 implies that S𝑛 × P𝜛𝑛

𝑛 forces the same.35 �

We conclude this section, establishing two more facts that will be needed
for the proof of the Main Theorem in Section 8.

Definition 4.31. For every 𝑛 < 𝜔, let T𝑛 := S𝑛 × Col(𝜎𝑛, <𝜅𝑛), and let
𝜓𝑛 : P𝑛 → T𝑛 be the map defined via

𝜓𝑛(𝑝) :=

{︃
⟨𝜛𝑛(𝑝), 𝑗𝑛(𝐹 0𝑝𝑛)(𝛼𝑝𝑛)⟩, if ℓ(𝑝) > 0;

⟨1lS𝑛 , ∅⟩, otherwise.

35Recall that 𝜎𝑛 := (𝜅𝑛−1)
+ (cf. Setup 4).
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Lemma 4.32. Let 𝑛 < 𝜔.

(1) T𝑛 is a 𝜅𝑛-cc poset of size 𝜅𝑛;
(2) 𝜓𝑛 defines a nice projection;

(3) P𝜓𝑛
𝑛 is 𝜅𝑛-directed-closed;

(4) for each 𝑝 ∈ 𝑃𝑛, P𝑛 ↓ 𝑝 and (T𝑛 ↓ 𝜓𝑛(𝑝))× (P𝜓𝑛
𝑛 ↓ 𝑝) isomorphic. In

particular, both are forcing equivalent.

Proof. (1) This is obvious.
(2) Let us go over the clauses of Definition 2.2. Clearly, 𝜓𝑛(1lP) = ⟨1lS𝑛 , ∅⟩,

so Clause (1) holds. Likewise, using that 𝜛𝑛 is order-preserving it is routine
to check that so is 𝜓𝑛. Thus, Clause (2) holds, as well.

Let us now prove Clause (3). Let 𝑝 ∈ 𝑃𝑛 and 𝑡 ≤S𝑛×Col(𝜎𝑛,<𝜅𝑛) 𝜓𝑛(𝑝).

Putting 𝑡 =: ⟨𝑠, 𝑐⟩ we have 𝑠 ⪯𝑛 𝜛𝑛(𝑝) and 𝑐 ⊇ 𝑗𝑛(𝐹 0𝑝𝑛)(𝛼𝑝𝑛). On one
hand, since 𝜛𝑛 is a nice projection, 𝑞 := 𝑝 + 𝑠 is a condition in P𝑛. On
the other hand, there is a function 𝐹 and 𝛽 < 𝜇 with dom(𝐹 ) ∈ 𝐸𝑛,𝛽 and

𝑗𝑛(𝐹 )(𝛽) = 𝑐.36 By possibly enlarging 𝑎𝑞𝑛 we may actually assume that
𝛽 = 𝛼𝑞 and also that dom(𝐹 ) = 𝜋mc(𝑎𝑞𝑛 ),𝛼𝑞𝑛

[𝐴𝑞𝑛 ]. Let 𝑟 be the condition in

P𝑛 with the same entries as 𝑞 but with 𝐹 0𝑟𝑛 := 𝐹 . Clearly, 𝑟 ≤ 𝑞 ≤ 𝑝. Also,
by the way 𝑟 is defined, 𝜓𝑛(𝑟) = ⟨𝜛𝑛(𝑟), 𝑐⟩ = ⟨𝜛𝑛(𝑞), 𝑐⟩ = ⟨𝑠, 𝑐⟩ = 𝑡.

Note that if 𝑢 ∈ 𝑃𝑛 is such that 𝑢 ≤ 𝑝 and 𝜓𝑛(𝑢) = 𝑡, then 𝑢 ≤ 𝑟.
Altogether, 𝑟 = 𝑝+ 𝑡, which yields Clause (3).37 Finally, for Clause (4) one
argues in the same lines as in Lemma 4.22.

(3) Let 𝐷 ⊆ P𝜓𝑛
𝑛 be a directed set of size < 𝜅𝑛. Then, 𝜓𝑛[𝐷] = {⟨𝑠, 𝑐⟩} for

some ⟨𝑠, 𝑐⟩ ∈ S𝑛 × Col(𝜎𝑛, <𝜅𝑛). Thus, for each 𝑝 ∈ 𝐷, 𝑗𝑛(𝐹 0𝑝𝑛)(𝛼𝑝𝑛) = 𝑐.
Arguing as usual, let 𝑎 ∈ [𝜆]<𝜅𝑛 be such that both 𝑎 ∩ 𝜇 and 𝑎 have ≤𝐸𝑛-
greatest elements 𝛼 and 𝛽, respectively, and 𝑎 ⊇

⋃︀
𝑝∈𝐷 𝑎

𝑝𝑛 . Then, for each

𝑝, 𝑞 ∈ 𝐷, 𝐵𝑝,𝑞 := {𝜈 < 𝜅𝑛 | 𝐹 0𝑝𝑛(𝜋𝛼,𝛼𝑝𝑛
(𝜈)) = 𝐹 0𝑞𝑛(𝜋𝛼,𝛼𝑞𝑛

(𝜈))} ∈ 𝐸𝑛,𝛼 and,
by 𝜅𝑛-completedness of 𝐸𝑛,𝛼, 𝐵 :=

⋂︀
{𝐵𝑝,𝑞 | 𝑝, 𝑞 ∈ 𝐷} ∈ 𝐸𝑛,𝛼.

Set 𝐴 := 𝜋−1
𝛽,𝛼“𝐵. By shrinking 𝐴 if necessary, we may further assume

𝜋𝛽,mc(𝑎𝑝𝑛)
“𝐴 ⊆ 𝐴𝑝𝑛 for each 𝑝 ∈ 𝐷. Since 𝜓𝑛 � 𝐷 is constant the map

𝜛𝑛 : 𝑝 ↦→ ⟨(𝜌𝑝𝑘, ℎ
0𝑝
𝑘 , ℎ

1𝑝
𝑘 , ℎ

2𝑝
𝑘 ) | 𝑘 < 𝑛⟩ is so. Let ⟨(𝜌𝑘, ℎ0𝑘, ℎ1𝑘, ℎ2𝑘) | 𝑘 < 𝑛⟩ be

such constant value. For each 𝑘 < 𝜔, set 𝑓𝑘 :=
⋃︀
𝑝∈𝐷 𝑓

𝑝
𝑘 and 𝐹 0 be such

that dom(𝐹 0) = 𝐵 and 𝐹 0(𝜈) := 𝐹 0𝑝(𝜋𝛼,𝛼𝑝𝑛
(𝜈)) for some 𝑝 ∈ 𝐷.

Observe that {⟨𝐹 1𝑝
𝑛 , 𝐹 2𝑝

𝑛 ⟩ | 𝑝 ∈ 𝐷} forms a directed subset of C𝑛 of size
< 𝜅𝑛 (cf. Lemma 4.27). Using the 𝜅𝑛-directed-closedness of C𝑛 we may let
⟨𝐹 1, 𝐹 2⟩ ∈ 𝐶𝑛 be a ⊑-lower bound. Actually, by using the moreover clause
of Lemma 4.27 we may assume that dom(𝐹 1) = dom(𝐹 2) ∈ 𝐸𝑛,𝛼. Thus, by
shrinking 𝐴 and 𝐵 if necessary we may assume dom(𝐹 1) = dom(𝐹 2) = 𝐵.

36Here we use that Col(𝜎𝑛, <𝜅𝑛)
𝑉 = Col(𝜎𝑛, <𝜅𝑛)

𝑀*
𝑛 , where 𝑀*

𝑛
∼= Ult(𝑉,𝐸𝑛 � 𝜇).

37The + here is regarded with respect to the map 𝜓𝑛.
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Define 𝑝* := ⟨𝑝*𝑘 | 𝑘 < 𝜔⟩ as follows:

𝑝*𝑘 :=

⎧⎪⎨⎪⎩
(𝑓𝑘, 𝜌𝑘, ℎ

0
𝑘, ℎ

1
𝑘, ℎ

2
𝑘), if 𝑘 < 𝑛;

(𝑎,𝐴, 𝑓𝑘, 𝐹
0, 𝐹 1, 𝐹 2), if 𝑘 = 𝑛;

(𝑎𝑘, 𝐴𝑘, 𝑓𝑘, 𝐹
0
𝑘 , 𝐹

1
𝑘 , 𝐹

2
𝑘 ), if 𝑘 > 𝑛,

where (𝑎𝑘, 𝐴𝑘, 𝑓𝑘, 𝐹
0
𝑘 , 𝐹

1
𝑘 , 𝐹

2
𝑘 ) is constructed as described in Lemma 4.19.

Clearly, 𝑝* ∈ 𝑄𝑛0 and it gives a ≤𝜓𝑛-lower bound for 𝐷.

(4) By Item (2) of this lemma, (T𝑛 ↓ 𝜓𝑛(𝑝)) × (P𝜓𝑛
𝑛 ↓ 𝑝) projects onto

P𝑛 ↓ 𝑝.38 Actually both posets are easily seen to be isomorphic. �

Lemma 4.33. Assume GCH. Let 𝑛 < 𝜔.

(1) P𝑛 is 𝜇+-Linked;
(2) P𝑛 forces CH𝜃 for any cardinal 𝜃 ≥ 𝜎𝑛;
(3) P𝜛𝑛

𝑛 preserves the GCH.

Proof. (1) By Definition 4.10, Lemma 4.19 and the fact that |𝐻𝜇| = 𝜇.
(2) As P𝑛 has size ≤ 𝜇+, Clause (1) together with a counting-of-nice-

names argument implies that 2𝜃 = 𝜃+ for any cardinal 𝜃 ≥ 𝜇+. By Lemma 4.29,
in any generic extension by P𝑛, |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+. It thus left to
verify that P𝑛 forces 2𝜃 = 𝜃+ for 𝜃 ∈ {𝜎𝑛, 𝜅𝑛}.
I By Clauses (1), (3) and (4) of Lemma 4.32, together with Easton’s

lemma, P𝑛 forces CH𝜎𝑛 if and only if T𝑛 forces CH𝜎𝑛 . By Clause (1) of
Lemma 4.32, T𝑛 is a 𝜅𝑛-cc poset of size 𝜅𝑛, so, the number of T𝑛-nice names
for subsets of 𝜎𝑛 is at most 𝜅<𝜅𝑛𝑛 = 𝜅𝑛 = 𝜎+𝑛 , as wanted.
I The number of nice names for subsets of 𝜅𝑛 is ((𝜇+)𝜇)𝜅𝑛 = 𝜇+, and

hence CH𝜅𝑛 is forced by P𝑛.
(3) By Lemma 4.23, P𝜛𝑛

𝑛 preserves GCH below 𝜎𝑛. By Remark 4.12 and
the the fact that S𝑛 has size < 𝜎𝑛, we infer from Clause (2) that GCH holds
at cardinals ≥ 𝜎𝑛, as well. �

5. Nice forking projections

In this short section we introduce the notions of nice forking projection,
a strengthening of the following key concept from Part I of this series:39

Definition 5.1 ([PRS19, S4]). Suppose that (P, ℓP, 𝑐P, �⃗�) is a (Σ, S⃗)-Prikry
forcing, A = (𝐴,E) is a notion of forcing, and ℓA and 𝑐A are functions with
dom(ℓA) = dom(𝑐A) = 𝐴. A pair of functions (t, 𝜋) is said to be a forking
projection from (A, ℓA) to (P, ℓP) iff all of the following hold:

(1) 𝜋 is a projection from A onto P, and ℓA = ℓP ∘ 𝜋;
(2) for all 𝑎 ∈ 𝐴, t(𝑎) is an order-preserving function from (P ↓ 𝜋(𝑎),≤)

to (A ↓ 𝑎,E);

38See Definition 2.2(4).
39In [PRS19] the following notion is formulated in terms of Σ-Prikry forcings. However

the same notion is meaningful in the more general context of (Σ, S⃗)-Prikry forcings.
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(3) for all 𝑝 ∈ 𝑃 , {𝑎 ∈ 𝐴 | 𝜋(𝑎) = 𝑝} admits a greatest element, which

we denote by ⌈𝑝⌉A;
(4) for all 𝑛,𝑚 < 𝜔 and 𝑏E𝑛+𝑚 𝑎, 𝑚(𝑎, 𝑏) exists and satisfies:

𝑚(𝑎, 𝑏) = t(𝑎)(𝑚(𝜋(𝑎), 𝜋(𝑏)));

(5) for all 𝑎 ∈ 𝐴 and 𝑟 ≤ 𝜋(𝑎), 𝜋(t(𝑎)(𝑟)) = 𝑟;

(6) for all 𝑎 ∈ 𝐴 and 𝑟 ≤ 𝜋(𝑎), 𝑎 = ⌈𝜋(𝑎)⌉A iff t(𝑎)(𝑟) = ⌈𝑟⌉A;
(7) for all 𝑎 ∈ 𝐴, 𝑎′ E0 𝑎 and 𝑟 ≤0 𝜋(𝑎′), t(𝑎′)(𝑟)E t(𝑎)(𝑟).

The pair (t, 𝜋) is said to be a forking projection from (A, ℓA, 𝑐A) to
(P, ℓP, 𝑐P) iff, in addition to all of the above, the following holds:

(8) for all 𝑎, 𝑎′ ∈ 𝐴, if 𝑐A(𝑎) = 𝑐A(𝑎′), then 𝑐P(𝜋(𝑎)) = 𝑐P(𝜋(𝑎′)) and, for

all 𝑟 ∈ 𝑃
𝜋(𝑎)
0 ∩ 𝑃 𝜋(𝑎

′)
0 , t(𝑎)(𝑟) = t(𝑎′)(𝑟).

Definition 5.2. A pair of functions (t, 𝜋) is said to be a nice forking pro-
jection from (A, ℓA, �⃗�) to (P, ℓP, �⃗�) iff all of the following hold:

(a) (t, 𝜋) is a forking projection from (A, ℓA) to (P, ℓP);
(b) �⃗� = �⃗� ∙𝜋, that is, 𝜍𝑛 = 𝜛𝑛 ∘𝜋 for all 𝑛 < 𝜔. Also, for each 𝑛, 𝜍𝑛 is a

nice projection from A≥𝑛 to S𝑛, and for each 𝑘 ≥ 𝑛, 𝜍𝑛 �A𝑘 is again
a nice projection.

The pair (t, 𝜋) is said to be a nice forking projection from (A, ℓA, 𝑐A, �⃗�) to
(P, ℓP, 𝑐P, �⃗�) if, in addition, Clause (8) of Definition 5.1 is satisfied.

Remark 5.3. If (P, ℓP, 𝑐P) is a Σ-Prikry forcing then a pair of maps (t, 𝜋)
is a forking projection from (P, ℓP) to (A, ℓA) iff it is a nice forking pro-
jection from (P, ℓP, �⃗�) to (A, ℓA, �⃗�). Similarly, the same applies to forking
projections from (A, ℓA, 𝑐A, �⃗�) to (P, ℓP, 𝑐P, �⃗�).

As we will see, most of the theory of iterations of (Σ, S⃗)-Prikry forc-
ings can be developed starting from the concept of nice forking projection.
Nonetheless, to be successful at limit stages, one needs nice forking pro-
jections yielding very canonical witnesses for niceness of the 𝜍𝑛’s. Roughly
speaking, we want that whenever 𝑝′ is a witness for niceness of some 𝜛𝑛

then there is a witness 𝑎′ for niceness of 𝜍𝑛 which lifts 𝑝′. This leads to the
concept of super nice forking projection that we next introduce:

Definition 5.4. A nice forking projection (t, 𝜋) from (A, ℓA, �⃗�) to (P, ℓP, �⃗�)
is called super nice if for each 𝑛 < 𝜔 the following property holds:

Let 𝑎, 𝑎′ ∈ 𝐴≥𝑛 and 𝑠 ∈ 𝑆𝑛 such that 𝑎′ E 𝑎+ 𝑠. Then, for each 𝑝* ∈ 𝑃≥𝑛
such that 𝑝* ≤𝜛𝑛 𝜋(𝑎) and 𝜋(𝑎′) = 𝑝* + 𝜍𝑛(𝑎′), there is 𝑎* E𝜍𝑛 𝑎 with

𝜋(𝑎*) = 𝑝* and 𝑎′ = 𝑎* + 𝜍𝑛(𝑎′).

The notion of super nice forking projection from (A, ℓA, 𝑐A, �⃗�) to (P, ℓP, 𝑐P, �⃗�)
is defined similarly.

Remark 5.5. The notion of super nice forking projection will not be neces-
sary for the purposes of the current section. Its importance will become ap-
parent in Section 7, where we present our iteration scheme (see Claim 7.4.1).
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Next we show that if (t, 𝜋) is a forking projection (not necessarily nice)
and �⃗� = 𝜋 ∘ �⃗� then 𝜍𝑛 satisfies Definition 2.2(3) for each 𝑛 < 𝜔.

Lemma 5.6. Let (t, 𝜋) be a forking projection from (A, ℓA) to (P, ℓP) and
suppose that �⃗� = 𝜋 ∘ �⃗�. Then, for all 𝑎 ∈ 𝐴, 𝑛 ≤ ℓA(𝑎) and 𝑠 ⪯𝑛 𝜍𝑛(𝑎),

𝑎+ 𝑠 = t(𝑎)(𝜋(𝑎) + 𝑠).

Proof. Combining Clauses (2) and (5) of Definition 5.1 with Clause (b) of
Definition 5.2 it follows that t(𝑎)(𝜋(𝑎) + 𝑠)E 𝑎 and 𝜍𝑛(t(𝑎)(𝜋(𝑎) + 𝑠)) = 𝑠.

Let 𝑏 ∈ 𝐴 such that 𝑏 E0 𝑎 and 𝜍𝑛(𝑏) ⪯𝑛 𝑠. Then, 𝜋(𝑏) ≤ 𝜋(𝑎) + 𝑠.
By [PRS20, Lemma 2.17], 𝑏 = t(𝑏)(𝜋(𝑏)), hence Clauses (2) and (7) of
Definition 5.1 yield 𝑏E0 t(𝑎)(𝜋(𝑏))E0 t(𝑎)(𝜋(𝑎) + 𝑠).

We are not done yet with establishing that 𝑎+ 𝑠 = t(𝑎)(𝜋(𝑎) + 𝑠), as we
have just dealt with 𝑏 E0 𝑎. However we can further argue as follows. Let
𝑏 E 𝑎 be with 𝜍𝑛(𝑏) ⪯𝑛 𝑠. Put, 𝑏′ := t(0(𝑎, 𝑏))(0(𝜋(𝑎), 𝜋(𝑏)) + 𝜍𝑛(𝑏)). It is
easy to check that 𝑏E 𝑏′ E0 𝑎 and that 𝜍𝑛(𝑏′) = 𝜍𝑛(𝑏) ⪯𝑛 𝑠. Hence, applying
the previous argument we arrive at 𝑏E 𝑏′ E0 t(𝑎)(𝜋(𝑎) + 𝑠). �

In [PRS20, S2], we drew a map of connections between Σ-Prikry forcings
and forking projection, demonstrating that this notion is crucial to define
a viable iteration scheme for Σ-Prikry posets. However, to be successful
in iterating Σ-Prikry forcings, forking projections need to be accompanied
with types, which are key to establish the CPP and property 𝒟 for (A, ℓA).

Definition 5.7 ([PRS20, S2]). A type over a forking projection (t, 𝜋) is a
map tp: 𝐴→ <𝜇𝜔 having the following properties:

(1) for each 𝑎 ∈ 𝐴, either dom(tp(𝑎)) = 𝛼+ 1 for some 𝛼 < 𝜇, in which
case we define mtp(𝑎) := tp(𝑎)(𝛼), or tp(𝑎) is empty, in which case
we define mtp(𝑎) := 0;

(2) for all 𝑎, 𝑏 ∈ 𝐴 with 𝑏 E 𝑎, dom(tp(𝑎)) ≤ dom(tp(𝑏)) and for each
𝑖 ∈ dom(tp(𝑎)), tp(𝑏)(𝑖) ≤ tp(𝑎)(𝑖);

(3) for all 𝑎 ∈ 𝐴 and 𝑞 ≤ 𝜋(𝑎), dom(tp(t(𝑎)(𝑞))) = dom(tp(𝑎));

(4) for all 𝑎 ∈ 𝐴, tp(𝑎) = ∅ iff 𝑎 = ⌈𝜋(𝑎)⌉A;
(5) for all 𝑎 ∈ 𝐴 and 𝛼 ∈ 𝜇 ∖ dom(tp(𝑎)), there exists a stretch of 𝑎 to

𝛼, denoted 𝑎y𝛼, and satisfying the following:
(a) 𝑎y𝛼 E𝜋 𝑎;
(b) dom(tp(𝑎y𝛼)) = 𝛼+ 1;
(c) tp(𝑎y𝛼)(𝑖) ≤ mtp(𝑎) whenever dom(tp(𝑎)) ≤ 𝑖 ≤ 𝛼;

(6) for all 𝑎, 𝑏 ∈ 𝐴 with dom(tp(𝑎)) = dom(tp(𝑏)), for every 𝛼 ∈ 𝜇 ∖
dom(tp(𝑎)), if 𝑏E 𝑎, then 𝑏y𝛼 E 𝑎y𝛼;

(7) For each 𝑛 < 𝜔, the poset Å𝑛 is dense in A𝑛, where Å𝑛 := (𝐴𝑛,E)

and 𝐴𝑛 := {𝑎 ∈ 𝐴𝑛 | 𝜋(𝑎) ∈ 𝑃𝑛 & mtp(𝑎) = 0}.

Remark 5.8. Note that Clauses (2) and (3) imply that for all 𝑚,𝑛 < 𝜔,

𝑎 ∈ 𝐴𝑚 and 𝑞 ≤ 𝜋(𝑎), if 𝑞 ∈ 𝑃𝑛 then t(𝑎)(𝑞) ∈ 𝐴𝑛.

In the more general context of (Σ, S⃗)-Prikry forcings – where the pair
(t, 𝜋) needs to be a nice forking projection – we need to require a bit more:
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Definition 5.9. A nice type over a nice forking projection (t, 𝜋) is a type
over (t, 𝜋) which moreover satisfies the following:

(8) For each 𝑛 < 𝜔, the poset Å𝜍𝑛𝑛 is dense in A𝜍𝑛𝑛 .40

Remark 5.10. If (P, ℓP, 𝑐P) is Σ-Prikry then any forking projection (t, 𝜋) is

nice and Å𝜍𝑛𝑛 = Å𝑛 for all 𝑛 < 𝜔. In particular, any type over (t, 𝜋) is nice.

We now turn to collect sufficient conditions — assuming the existence
of a nice forking projection (t, 𝜋) from (A, ℓA, 𝑐A, �⃗�) to (P, ℓP, 𝑐P, �⃗�) — for

(A, ℓA, 𝑐A, �⃗�) to be (Σ, S⃗)-Prikry on its own, and then address the problem of
ensuring that the A𝑛’s be suitable for reflection. This study will be needed
in Section 6, most notably, in the proof of Theorem 6.16.

Setup 5. Throughout the rest of this section, we suppose that:

∙ P = (𝑃,≤) is a notion of forcing with a greatest element 1lP;
∙ A = (𝐴,E) is a notion of forcing with a greatest element 1lA;
∙ Σ = ⟨𝜎𝑛 | 𝑛 < 𝜔⟩ is a non-decreasing sequence of regular uncountable

cardinals, converging to some cardinal 𝜅, and 𝜇 is a cardinal such
that 1lP P �̌� = �̌�+;

∙ S⃗ = ⟨S𝑛 | 𝑛 < 𝜔⟩ is a sequence of notions of forcing, S𝑛 = (𝑆𝑛,⪯𝑛),
with |𝑆𝑛| < 𝜎𝑛;

∙ ℓP, 𝑐P and �⃗� = ⟨𝜛𝑛 | 𝑛 < 𝜔⟩ are witnesses for (P, ℓP, 𝑐P, �⃗�) being

(Σ, S⃗)-Prikry;
∙ ℓA and 𝑐A are functions with dom(ℓA) = dom(𝑐A) = 𝐴, and �⃗� = ⟨𝜍𝑛 |
𝑛 < 𝜔⟩ is a sequence of functions.

∙ (t, 𝜋) is a nice forking projection from (A, ℓA, 𝑐A, �⃗�) to (P, ℓP, 𝑐P, �⃗�).

Theorem 5.11. Under the assumptions of Setup 5, (A, ℓA, 𝑐A, �⃗�) satisfies
all the clauses of Definition 3.3, with the possible exception of (2), (7) and
(9). Moreover, if 1lP P “�̌� is singular”, then 1lA A �̌� = �̌�+.

Proof. Clauses (1) and (3) follow respectively from [PRS19, Lemmas 4.3 and
4.7]. Clause (4) holds by virtue of Clause (4) of Definition 5.1. Clauses (5)
and (6) are respectively proved in [PRS19, Lemmas 4.7 and 4.10], and
Clause (8) follows from Clause (b) of Definition 5.2. Finally, Lemma 3.14(3)
yields the moreover part. For more details, see [PRS19, Corollary 4.13]. �

Next, we give sufficient conditions in order for (A, ℓA) to satisfy the CPP.
In Part II of this series we prove that CPP follows from property 𝒟 of (A, ℓA):

Lemma 5.12 ([PRS20, Lemma 2.21]). Suppose that (A, ℓA) has property
𝒟. Then it has the CPP.

In effect, everything amounts to find sufficient conditions for (A, ℓA) to
satisfy property 𝒟. The following concept will be useful on that respect:

40Here Å𝑛 is the forcing from Definition 5.7(7).



36 ALEJANDRO POVEDA, ASSAF RINOT, AND DIMA SINAPOVA

Definition 5.13 (Weak Mixing property). The forking projection (t, 𝜋)
is said to have the weak mixing property iff it admits a type tp satisfying
that for every 𝑛 < 𝜔, 𝑎 ∈ 𝐴, �⃗�, and 𝑝′ ≤0 𝜋(𝑎), and for every function
𝑔 : 𝑊𝑛(𝜋(𝑎)) → A ↓ 𝑎, if there exists an ordinal 𝜄 such that all of the
following hold:

(1) �⃗� = ⟨𝑟𝜉 | 𝜉 < 𝜒⟩ is a good enumeration of 𝑊𝑛(𝜋(𝑎));
(2) ⟨𝜋(𝑔(𝑟𝜉)) | 𝜉 < 𝜒⟩ is diagonalizable with respect to �⃗�, as witnessed

by 𝑝′;41

(3) for every 𝜉 < 𝜒:42

∙ if 𝜉 < 𝜄, then dom(tp(𝑔(𝑟𝜉)) = 0;
∙ if 𝜉 = 𝜄, then dom(tp(𝑔(𝑟𝜉)) ≥ 1;
∙ if 𝜉 > 𝜄, then (sup𝜂<𝜉 dom(tp(𝑔(𝑟𝜂))) + 1 < dom(tp(𝑔(𝑟𝜉));

(4) for all 𝜉 ∈ (𝜄, 𝜒) and 𝑖 ∈ [dom(tp(𝑎)), sup𝜂<𝜉 dom(tp(𝑔(𝑟𝜂)))],

tp(𝑔(𝑟𝜉))(𝑖) ≤ mtp(𝑎),

(5) sup𝜉<𝜒 mtp(𝑔(𝑟𝜉)) < 𝜔,

then there exists 𝑏E0 𝑎 with 𝜋(𝑏) = 𝑝′ such that, for all 𝑞′ ∈𝑊𝑛(𝑝′),

t(𝑏)(𝑞′)E0 𝑔(𝑤(𝜋(𝑎), 𝑞′)).

Remark 5.14. We would like to emphasize that the above notion make sense
even when both (t, 𝜋) and tp are not nice. This is simply because the above

clauses do not involve the maps 𝜍𝑛’s nor the forcings Å𝜍𝑛𝑛 .

As shown in [PRS20, S2], the weak mixing property is the key to ensure
that (A, ℓA) has property 𝒟. In this respect, the following lemma gathers
the results proved in Lemma 2.27 and Corollary 2.28 of [PRS20]:

Lemma 5.15. Suppose that (t, 𝜋) has the weak mixing property and that
(P, ℓP) has property 𝒟. Then (A, ℓA) has property 𝒟, as well.

In particular, if (P, ℓP) has property 𝒟 and (t, 𝜋) has the weak mixing
property, then (A, ℓA) has both property 𝒟 and the CPP.

We are still need to verify Clause (2) and (9) of Definition 3.3. Arguing
similarly to [PRS20, Lemma 2.29] we can prove the following:

Lemma 5.16. Suppose that (t, 𝜋) is as in Setup 5 or, just a pair of maps
satisfying Clauses (1), (2), (5) and (7) of Definition 5.1.

Let 𝑛 < 𝜔. If (t, 𝜋) admits a type, and Å𝑛 is defined according to the last

clause of Definition 5.7, if Å𝜋𝑛 is ℵ1-directed-closed, then so is Å𝑛. Similarly,

if Å𝜋𝑛 is 𝜎𝑛-directed-closed, then so is Å𝜍𝑛𝑛 .
If in addition (t, 𝜋) admits a nice type then (A, ℓA, 𝑐A, �⃗�) satisfies Clauses (2)

and (9) of Definition 3.3.

Additionally, a routine verification gives the following:

41Recall Definition 3.15.
42The role of the 𝜄 is to keep track of the support when we apply the weak mixing

lemma in the iteration (see, e.g. [PRS20, Lemma 3.10]).
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Lemma 5.17. Suppose that (t, 𝜋) is as in Setup 5. Then, if �⃗� is a coherent
sequence of nice projections then so is �⃗�. �

We conclude this section by providing a sufficient condition for the posets
A𝑛’s to be suitable for reflection with respect to a sequence of cardinals for
which the posets P𝑛’s were so.

Lemma 5.18. Let 𝑛 be a positive integer. Assume:

(i) 𝜅𝑛−1, 𝜅𝑛 are regular uncountable cardinals with 𝜅𝑛−1 ≤ 𝜎𝑛 < 𝜅𝑛;

(ii) (A, ℓA, 𝑐A, �⃗�) is (Σ, S⃗)-Prikry;
(iii) (t, 𝜋) is a nice forking projection from (A, ℓA, �⃗�) to (P, ℓP, �⃗�);
(iv) (P𝑛, S𝑛, 𝜛𝑛) is suitable for reflection with respect to ⟨𝜎𝑛−1, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩;
(v) S𝑛 × A𝜍𝑛𝑛 forces “|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜅𝑛−1)

++”.

Then (A𝑛,S𝑛, 𝜍𝑛) is suitable for reflection with respect to ⟨𝜎𝑛−1, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩.

Proof. Clauses (1), (2) and (4) of Definition 2.10 hold by virtue of hypothe-
ses, (𝑖𝑣), (𝑖𝑖)-(𝑖𝑖𝑖)-(𝑖𝑣) and (𝑖𝑣), respectively.

Now let us address Clause (3). Given hypothesis (𝑣), we are left with ver-
ifying that A𝑛 forces “|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜅𝑛−1)

++”. By Definition 2.2(4),
for every 𝑎 ∈ 𝐴𝑛, (S𝑛 ↓ 𝜍𝑛(𝑎)) × (A𝜍𝑛𝑛 ↓ 𝑎) projects onto A𝑛 ↓ 𝑎. In ad-
dition, by hypothesis (𝑖𝑖𝑖), A𝑛 projects onto P𝑛. Since both ends force
“|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜅𝑛−1)

++”, the same is true for A𝑛. �

6. Stationary Reflection and Killing a Fragile Stationary Set

In this section, we isolate a natural notion of a fragile set and study

two aspects of it. In the first subsection, we prove that, given a (Σ, S⃗)-

Prikry poset P and an 𝑟⋆-fragile stationary set �̇� , a tweaked version of

Sharon’s functor A(·, ·) from [PRS20, S4] yields a (Σ, S⃗)-Prikry poset A(P, �̇� )

admitting a nice forking projection to P and killing the stationarity of �̇� . In
the second subsection, we make the connection between fragile stationary
sets, suitability for reflection and non-reflecting stationary sets. The two
subsections can be read independently of each other.

Setup 6. As a setup for the whole section, we assume that (P, ℓ, 𝑐, �⃗�) is

a given (Σ, S⃗)-Prikry forcing such that (P, ℓ) satisfies property 𝒟. Denote

P = (𝑃,≤), Σ = ⟨𝜎𝑛 | 𝑛 < 𝜔⟩, �⃗� = ⟨𝜛𝑛 | 𝑛 < 𝜔⟩, S⃗ = ⟨S𝑛 | 𝑛 < 𝜔⟩. Also,
define 𝜅 and 𝜇 as in Definition 3.3, and assume that 1lP P “�̌� is singular”
and that 𝜇<𝜇 = 𝜇. For each 𝑛 < 𝜔, we denote by P̊𝑛 the countably-closed
dense suposet of P𝑛 given by Clause (2) of Definition 3.3. Recall that by

virtue of Clause (9), P̊𝜛𝑛
𝑛 is a 𝜎𝑛-directed-closed dense subforcing of P̊𝑛. We

often refer to P̊𝑛 as the ring of P𝑛. In addition, we will assume that �⃗� is a
coherence sequence of nice projections (see Definition 3.7).

The following concept is implicit in the proof of [CFM01, Theorem 11.1]:

Definition 6.1. Suppose 𝑟⋆ ∈ 𝑃 forces that �̇� is a P-name for a stationary
subset 𝑇 of 𝜇. We say that �̇� is 𝑟⋆-fragile if, looking for each 𝑛 < 𝜔 at
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�̇�𝑛 := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ 𝜇 × 𝑃𝑛 & 𝑝 P �̌� ∈ �̇�}, then, for every 𝑞 ≤ 𝑟⋆,

𝑞 Pℓ(𝑞) “�̇�ℓ(𝑞) is nonstationary”.

6.1. Killing one fragile set. Let 𝑟⋆ ∈ 𝑃 and �̇� be a P-name for an 𝑟⋆-
fragile stationary subset of 𝜇. Let 𝐼 := 𝜔 ∖ ℓ(𝑟⋆). By Definition 6.1, for all

𝑞 ≤ 𝑟⋆ with ℓ(𝑞) ∈ 𝐼, 𝑞 Pℓ(𝑞) “�̇�ℓ(𝑞) is nonstationary”. Thus, for each 𝑛 ∈ 𝐼,

we may pick a P𝑛-name �̇�𝑛 for a club subset of 𝜇 such that, for all 𝑞 ≤ 𝑟⋆,

𝑞 Pℓ(𝑞) �̇�ℓ(𝑞) ∩ �̇�ℓ(𝑞) = ∅.

Consider the following binary relation:

𝑅 := {(𝛼, 𝑞) ∈ 𝜇× 𝑃 | 𝑞 ≤ 𝑟⋆ & ∀𝑟 ≤ 𝑞[ℓ(𝑟) ∈ 𝐼 → 𝑟 Pℓ(𝑟) �̌� ∈ �̇�ℓ(𝑟)]},

and define �̇�+ := {(�̌�, 𝑝) | (𝛼, 𝑝) ∈ (𝐸𝜇𝜔)𝑉 × 𝑃 & 𝑝 Pℓ(𝑝) �̌� /∈ �̇�ℓ(𝑝)}.
It is immediate that for all 𝑞 ≤ 𝑟⋆ with 𝑛 := ℓ(𝑞) in 𝐼, 𝑞 P �̇� ⊆ �̇�+.

Note that, for all (𝛼, 𝑞) ∈ 𝑅, 𝑞 P �̌� /∈ �̇�+. Also, if (𝛼, 𝑞) ∈ 𝑅 and 𝑞′ ≤ 𝑞
then (𝛼, 𝑞′) ∈ 𝑅, as well

In this section we will aim to kill the stationarity of the bigger set �̇�+ in
place of 𝑇 . The whole point for this is that �̇�+ has the following additional
property: 𝑞 ≤ 𝑟⋆ with 𝑛 := ℓ(𝑞) in 𝐼, 𝑞 P𝑛 �̇�

+
𝑛 = �̌� ∖ �̇�𝑛. This was crucially

used in the proof of [PRS20, Lemma 4.24] when we verified the density of

the ring poset (̊P𝛿)𝑛 in (P𝛿)𝑛, for 𝛿 ∈ acc(𝜇+ + 1).

The next proof mimics the argument of [PRS19, Claim 5.6.1]:

Lemma 6.2. For all 𝛾 < 𝜇 and 𝑝 ≤ 𝑟⋆, there is an ordinal 𝛾 ∈ (𝛾, 𝜇) and
𝑝 ≤�⃗� 𝑝, such that (𝛾, 𝑝) ∈ 𝑅.

Proof. We begin proving the following auxiliary claim:

Claim 6.2.1. For all 𝛾 < 𝜇 and 𝑝 ≤ 𝑟⋆ there is an ordinal 𝛾 ∈ (𝛾, 𝜇) and

𝑝 ≤�⃗� 𝑝, such that for all 𝑞 ≤ 𝑝, 𝑞 Pℓ(𝑞) �̇�ℓ(𝑞) ∩ (𝛾, ˇ̄𝛾) ̸= ∅̌.

Proof. Let 𝛾 and 𝑝 be as above. Set ℓ := ℓ(𝑝), 𝑠 := 𝜛ℓ(𝑝) and put

𝐷𝑝,𝛾 := {𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝 & ∃𝛾′ > 𝛾 (𝑞 Pℓ(𝑞) 𝛾
′ ∈ �̇�ℓ(𝑞))}.

Clearly, 𝐷𝑝,𝛾 is 0-open, hence appealing to Clause (2) of Lemma 3.13 we

obtain a condition 𝑝 ≤�⃗� 𝑝 with the property that the set

𝑈𝐷𝑝,𝛾 := {𝑡 ⪯ℓ 𝑠 | ∀𝑛 < 𝜔 (𝑃 𝑝+𝑡𝑛 ⊆ 𝐷𝑝,𝛾 or 𝑃 𝑝+𝑡𝑛 ∩𝐷𝑝,𝛾 = ∅)}

is dense in Sℓ ↓ 𝑠. Note that 𝑈𝐷𝑝,𝛾 = {𝑡 ⪯ℓ 𝑠 | ∀𝑛 < 𝜔 𝑃 𝑝+𝑡𝑛 ⊆ 𝐷𝑝,𝛾}. In
effect, 𝑊 (𝑝 + 𝑡) ⊆ 𝐷𝑝,𝛾 for all 𝑡 ∈ 𝑈𝐷𝑝,𝛾 . For each 𝑟 ∈ 𝑊 (𝑝 + 𝑡) pick some
ordinal 𝛾𝑟 ∈ (𝛾, 𝜇) witnessing that 𝑟 ∈ 𝐷𝑝,𝛾 , and put

𝛾 := sup{𝛾𝑟 | 𝑟 ∈𝑊 (𝑝+ 𝑡) & 𝑡 ⪯ℓ 𝑠} + 1.

Combining Clauses (𝛽) and (5) of Definition 3.3 we infer that 𝛾 < 𝜇.

We claim that 𝑝 is as desired. Otherwise, let 𝑞 ≤ 𝑝 forcing the negation of
the claim. By virtue of Clause (8) of Definition 3.3, 𝜛ℓ is a nice projection
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from P≥ℓ to Sℓ, hence Definition 2.2(4) applied to this map yields 𝑞 =
𝑞 +𝜛ℓ(𝑞), for some 𝑞 ≤𝜛ℓ 𝑝. Putting 𝑡 := 𝜛ℓ(𝑞), it is clear that 𝑡 ⪯ℓ 𝑠. By
extending 𝑡 if necessary, we may freely assume that 𝑡 ∈ 𝑈𝐷𝑝,𝛾 .

On the other hand, 𝑞 ≤0 𝑤(𝑝, 𝑞), hence Lemma 3.9 and Clause (3) of
Lemma 3.8 yield 𝑞 ≤0 𝑤(𝑝, 𝑞 + 𝑡) + 𝑡 = 𝑤(𝑝, 𝑞) + 𝑡 ∈ 𝑊 (𝑝+ 𝑡). This clearly
yields a contradiction with our choice of 𝑞. �

Now we will take advantage of the previous claim to prove the lemma.
So, let 𝛾 < 𝜇 and 𝑝 ≤ 𝑟⋆. Applying the above claim inductively, we find a
≤�⃗�-decreasing sequence ⟨𝑝𝑛 | 𝑛 < 𝜔⟩ and an increasing sequence of ordinals
below 𝜇, ⟨𝛾𝑛 | 𝑛 < 𝜔⟩, such that 𝑝0 := 𝑝, 𝛾0 := 𝛾, and such that for every
𝑛 < 𝜔, the pair (𝑝𝑛+1, 𝛾𝑛+1) witnesses together the conclusion of Claim 6.2.1
when putting (𝑝, 𝛾) := (𝑝𝑛, 𝛾𝑛). Moreover, Clause (9) of Definition 3.3 allows

us to assume that the 𝑝𝑛 are taken from P̊𝜛ℓ
ℓ ↓ 𝑝, hence we may find 𝑝 be a

≤�⃗�-lower bound. Setting 𝛾 := sup𝑛<𝜔 𝛾𝑛 we have that (𝛾, 𝑝) ∈ 𝑅. �

6.1.1. Definition of the functor and basic properties.

Definition 6.3. Let 𝑝 be a condition in P. A labeled ⟨𝑝, S⃗⟩-tree is a function
𝑆 : dom(𝑆) → [𝜇]<𝜇, where

dom(𝑆) = {(𝑞, 𝑡) | 𝑞 ∈𝑊 (𝑝) & 𝑡 ∈ ∪ℓ(𝑝)≤𝑛≤ℓ(𝑞) S𝑛 ↓ 𝜛𝑛(𝑞)},
and such that for all (𝑞, 𝑡) ∈ dom(𝑆) the following hold:

(1) 𝑆(𝑞, 𝑡) is a closed bounded subset of 𝜇;
(2) 𝑆(𝑞′, 𝑡′) ⊇ 𝑆(𝑞, 𝑡) whenever 𝑞′ + 𝑡′ ≤ 𝑞 + 𝑡;

(3) 𝑞 + 𝑡 P 𝑆(𝑞, 𝑡) ∩ �̇�+ = ∅;
(4) there is 𝑚 < 𝜔 such that for any 𝑞 ∈𝑊 (𝑝) and (𝑞′, 𝑡′) ∈ dom(𝑆) with

𝑞′ ≤ 𝑞, if 𝑆(𝑞′, 𝑡′) ̸= ∅ and ℓ(𝑞) ≥ ℓ(𝑝) +𝑚, then (max(𝑆(𝑞′, 𝑡′)), 𝑞) ∈
𝑅. The least such 𝑚 is denoted by 𝑚(𝑆).

Remark 6.4. For any pairs (𝑞′, 𝑡′), (𝑞, 𝑡) of elements of dom(𝑆) with 𝑞′ + 𝑡′ ≤
𝑞 + 𝑡, if if 𝑞 is incompatible with 𝑟⋆, then 𝑆(𝑞′, 𝑡′) = ∅.

Definition 6.5. For 𝑝 ∈ 𝑃 , we say that �⃗� = ⟨𝑆𝑖 | 𝑖 ≤ 𝛼⟩ is a ⟨𝑝, S⃗⟩-strategy
iff all of the following hold:

(1) 𝛼 < 𝜇;

(2) for all 𝑖 ≤ 𝛼, 𝑆𝑖 is a labeled ⟨𝑝, S⃗⟩-tree;
(3) for every 𝑖 < 𝛼 and (𝑞, 𝑡) ∈ dom(𝑆𝑖), 𝑆𝑖(𝑞, 𝑡) ⊑ 𝑆𝑖+1(𝑞, 𝑡);
(4) for every 𝑖 < 𝛼 and pairs (𝑞, 𝑡), (𝑞′, 𝑡′) in dom(𝑆𝑖) with 𝑞′ + 𝑡′ ≤ 𝑞+ 𝑡,

𝑆𝑖+1(𝑞, 𝑡) ∖ 𝑆𝑖(𝑞, 𝑡) ⊑ 𝑆𝑖+1(𝑞
′, 𝑡′) ∖ 𝑆𝑖(𝑞′, 𝑡′);

(5) for every limit 𝑖 ≤ 𝛼 and (𝑞, 𝑡) ∈ dom(𝑆𝑖), 𝑆𝑖(𝑞, 𝑡) is the ordinal
closure of (

⋃︀
𝑗<𝑖 𝑆𝑗(𝑞, 𝑡)).

Definition 6.6. Let A(P, S⃗, �̇� ) be the notion of forcing A := (𝐴,E), where:

(1) (𝑝, �⃗�) ∈ 𝐴 iff 𝑝 ∈ 𝑃 and either �⃗� = ∅ or �⃗� is a ⟨𝑝, S⃗⟩-strategy;

(2) (𝑝′, �⃗�′)E (𝑝, �⃗�) iff:
(a) 𝑝′ ≤ 𝑝;
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(b) dom(�⃗�′) ≥ dom(�⃗�);

(c) for each 𝑖 ∈ dom(�⃗�) and (𝑞, 𝑡) ∈ dom(𝑆′
𝑖),

𝑆′
𝑖(𝑞, 𝑡) = 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑡𝑞),

where 𝑡𝑞 := 𝜛ℓ(𝑞)(𝑞 + 𝑡).43

For all 𝑝 ∈ 𝑃 , denote ⌈𝑝⌉A := (𝑝, ∅).

Definition 6.7 (Projections and Pitchfork).

(1) Let ℓA := ℓ ∘ 𝜋 and �⃗� := �⃗� ∙ 𝜋, where 𝜋 : A → P is defined via

𝜋(𝑝, �⃗�) := 𝑝;

(2) Define 𝑐A : 𝐴→ 𝐻𝜇, by letting, for all (𝑝, �⃗�) ∈ 𝐴,

𝑐A(𝑝, �⃗�) := (𝑐(𝑝), {(𝑖, 𝑐(𝑞), 𝑆𝑖(𝑞, ·)) | 𝑖 ∈ dom(�⃗�), 𝑞 ∈𝑊 (𝑝)}),

where 𝑆𝑖(𝑞, ·) denotes the map 𝑡 ↦→ 𝑆𝑖(𝑞, 𝑡);

(3) Let 𝑎 = (𝑝, �⃗�) ∈ 𝐴. The map t(𝑎) : P ↓ 𝑝 → 𝐴 is defined by letting

t(𝑎)(𝑝′) := (𝑝′, 𝑆′), where 𝑆′ is a sequence such that dom(�⃗�′) =

dom(�⃗�), and for all 𝑖 ∈ dom(�⃗�′) the following are true:
(a) dom(𝑆′

𝑖) = {(𝑟, 𝑡) | 𝑟 ∈𝑊 (𝑝′) & 𝑡 ∈ ∪ℓ(𝑝′)≤𝑛≤ℓ(𝑟) S𝑛 ↓ 𝜛𝑛(𝑟)},
(b) for all (𝑞.𝑡) ∈ dom(𝑆′

𝑖),

(*) 𝑆′
𝑖(𝑞, 𝑡) = 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑡𝑞).

44

Remark 6.8. If (P, ℓ, 𝑐) is Σ-Prikry then we recuperate the corresponding
notions from [PRS20, S4].

We next show that (t, 𝜋) defines a super nice forking projection from
(A, ℓA, 𝑐A, �⃗�) to (P, ℓ, 𝑐, �⃗�). The next lemma takes care partially of this task
by showing that (t, 𝜋) is a forking projection from (A, ℓA, 𝑐A) to (P, ℓ, 𝑐).

Lemma 6.9 (Forking projection). The pair (t, 𝜋) is a forking projection
between (A, ℓA, 𝑐A) and (P, ℓ, 𝑐).

Proof. We just give some details for the verification of Clauses (2). The rest
can be proved arguing similarly to [PRS19, Lemma 6.13]. Here it goes:

(2) Let 𝑎 = (𝑝, �⃗�) and 𝑝′ ≤ 𝜋(𝑎). We just prove that t(𝑎) is well-
defined. The argument for t(𝑎) being order-preserving is very similar to

the one from [PRS19, Lemma 6.13(2)]. If �⃗� = ∅, then Definition 6.7(*)

yields t(𝑎)(𝑝′) = (𝑝′, ∅) ∈ 𝐴. So, suppose that dom(�⃗�) = 𝛼 + 1. Let

(𝑝′, 𝑆′) := t(𝑎)(𝑝′) and 𝑖 ≤ 𝛼. We shall first verify that 𝑆′
𝑖 is a ⟨𝑝′, S⃗⟩-labeled

tree. Let (𝑞, 𝑡) ∈ dom(𝑆′
𝑖) and let us go over the clauses of Definition 6.3.

Since the verification of Clauses (3) and (4) are on the same lines of that of
(2) we just give details for the latter.

43Note that 𝑡𝑞 ⪯𝑛 𝜛𝑛(𝑤(𝑝, 𝑞)) for some 𝑛 ∈ [ℓ(𝑝′), ℓ(𝑞)]. Thus, (𝑤(𝑝, 𝑞), 𝑡𝑞) ∈ dom(𝑆𝑖).
And if 𝑡 ⪯ℓ(𝑞) 𝜛ℓ(𝑞)(𝑞), then 𝑡 = 𝑡𝑞.

44Here 𝑡𝑞 is as in Definition 6.6((c)).
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(2): Let (𝑞′, 𝑡′) ∈ dom(𝑆′
𝑖) be such that 𝑞′ + 𝑡′ ≤ 𝑞 + 𝑡. By Clause

(6) of Definition 3.3, 𝑤(𝑝, 𝑞′ + 𝑡′) ≤ 𝑤(𝑝, 𝑞 + 𝑡). Also, combining [PRS19,
Lemma 2.9] and Lemma 3.9 we have the following chain of equalities:

𝑤(𝑝, 𝑞′ + 𝑡′) = 𝑤(𝑝, 𝑤(𝑝′, 𝑞′ + 𝑡′)) = 𝑤(𝑝, 𝑤(𝑝′, 𝑞′)) = 𝑤(𝑝, 𝑞′).

Similarly one shows 𝑤(𝑝, 𝑞 + 𝑡) = 𝑤(𝑝, 𝑞). Thus, 𝑤(𝑝, 𝑞′) ≤ 𝑤(𝑝, 𝑞).
Combining Clause (2) of Definition 3.7 with 𝑞′ + 𝑡′ ≤ 𝑞 + 𝑡 we have

𝜛ℓ(𝑞)(𝑤(𝑝, 𝑞′) + 𝑡′𝑞′) = 𝜛ℓ(𝑞)(𝑞
′ + 𝑡′) ⪯ℓ(𝑞) 𝜛ℓ(𝑞)(𝑞 + 𝑡) = 𝑡𝑞.

Thus, 𝑤(𝑝, 𝑞′) + 𝑡′𝑞′ ≤ 𝑤(𝑝, 𝑞) + 𝑡𝑞. Now use Clause (2) for the labeled ⟨𝑝, S⃗⟩-
tree 𝑆𝑖 to get that 𝑆′

𝑖(𝑞
′, 𝑡′) = 𝑆𝑖(𝑤(𝑝, 𝑞′), 𝑡′𝑞′) ⊇ 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑡𝑞) = 𝑆′

𝑖(𝑞, 𝑡).

To prove that (𝑝′, �⃗�′) ∈ 𝐴 it remains to argue that �⃗�′ fulfils the re-
quirements described in Clauses (3), (4) and (5) of Definition 6.5. Indeed,

each of these clauses follow from the corresponding ones for �⃗�. There
is just one delicate point in Clause (4), where one needs to argue that
𝑤(𝑝, 𝑞′) + 𝑡′𝑞′ ≤ 𝑤(𝑝, 𝑞) + 𝑡𝑞. This is done as in Clause (2) above.

Finally, it is clear that t(𝑎)(𝑝′) = (𝑝′, �⃗�′) E (𝑝, �⃗�) (see Definition 6.6).
This concludes the verification of Clause (2). �

Lemma 6.10. For each 𝑛 < 𝜔, 𝜍𝑛 is a nice projection from A≥𝑛 to S𝑛, and
for each 𝑘 ≥ 𝑛, 𝜍𝑛 � A𝑘 is again a nice projection.

Proof. We go over the clauses of Definition 2.2. Clauses (1) and (2) follow
from the fact that 𝜍𝑛 is the composition of the projections 𝜛𝑛 and 𝜋 and
Clause (3) follows from Lemma 6.9 and Lemma 5.6.

Claim 6.10.1. Let 𝑎, 𝑎′ ∈ 𝐴≥𝑛 and 𝑠 ⪯𝑛 𝜍𝑛(𝑎) with 𝑎′ E 𝑎 + 𝑠. Then,
for each 𝑝* ∈ 𝑃≥𝑛 such that 𝑝* ≤𝜛𝑛 𝜋(𝑎) and 𝜋(𝑎′) = 𝑝* + 𝜍𝑛(𝑎′) there is
𝑎* ∈ 𝐴≥𝑛 such that 𝑎* E𝜍𝑛 𝑎 with 𝜋(𝑎*) = 𝑝* and 𝑎′ = 𝑎* + 𝜍𝑛(𝑎′).

In particular, 𝜍𝑛 satisfies Clause (4).

Proof. Let 𝑎 = (𝑝, �⃗�), 𝑎′ = (𝑝′, �⃗�′) and 𝑠 ⪯𝑛 𝜍𝑛(𝑎) be as above.
By Lemma 5.6, 𝑎′ E 𝑎 + 𝑠 = t(𝑎)(𝑝 + 𝑠), hence 𝑝′ ≤ 𝑝 + 𝑠. Since 𝜛𝑛 is

a nice projection from P≥𝑛 to S𝑛, Definition 2.2(4) yields the existence of a
condition 𝑝* ∈ 𝑃≥𝑛 such that 𝑝* ≤𝜛𝑛 𝑝 and 𝑝′ = 𝑝* + 𝜍𝑛(𝑎′). So, let 𝑝* be
some such condition and set 𝑡 := 𝜛𝑛(𝑝′). We have that 𝜍𝑛(𝑎′) = 𝑡. Our aim

is to find a sequence �⃗�* such that 𝑎* := (𝑝*, �⃗�*) is a condition in A≥𝑛 with
the property that 𝑎* E𝜍𝑛 𝑎 and 𝑎* + 𝑡 = 𝑎′.

As 𝑛 ≤ ℓ(𝑝*), Definition 2 yields 𝜛𝑛“𝑊 (𝑝*) = {𝜛𝑛(𝑝)}, hence 𝑞 + 𝑡
is well-defined for all 𝑞 ∈ 𝑊 (𝑝*). Moreover, by virtue of Lemma 3.8(3),
𝑞 + 𝑡 ∈𝑊 (𝑝* + 𝑡) = 𝑊 (𝑝′) for every 𝑞 ∈𝑊 (𝑝*).

Put �⃗� := ⟨𝑆𝑖 | 𝑖 ≤ 𝛼⟩ and �⃗�′ := ⟨𝑆′
𝑖 | 𝑖 ≤ 𝛽⟩. Let �⃗�* := ⟨𝑆𝑖 | 𝑖 ≤ 𝛽⟩

be the sequence where for each 𝑖 ≤ 𝛽, 𝑆*
𝑖 is the function with domain

{(𝑞, 𝑢) | 𝑞 ∈ 𝑊 (𝑝*) &𝑢 ∈ ∪ℓ(𝑝*)≤𝑚≤ℓ(𝑞) S𝑚 ↓ 𝜛𝑚(𝑞)} defined according to
the following casuistic:
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(a) If �⃗� is the empty sequence, then

𝑆*
𝑖 (𝑞, 𝑢) :=

{︃
𝑆′
𝑖(𝑞 + 𝑡, 𝑢𝑞), if 𝑞 + 𝑢 ≤ 𝑞 + 𝑡;

∅, otherwise.

(b) If �⃗� is non-empty then there are two more cases to consider:
(1) If 𝛼 < 𝑖 ≤ 𝛽, then

𝑆*
𝑖 (𝑞, 𝑢) :=

{︃
𝑆′
𝑖(𝑞 + 𝑡, 𝑢𝑞), if 𝑞 + 𝑢 ≤ 𝑞 + 𝑡;

𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞), otherwise.

(2) Otherwise, 𝑆*
𝑖 (𝑞, 𝑢) := 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑢𝑞).

By Lemma 3.8(4), 𝑞 + 𝑢 = 𝑞 + 𝑢𝑞 for all (𝑞, 𝑢) ∈ dom(𝑆*
𝑖 ) and 𝑖 ≤ 𝛽.

We now show that �⃗�* is a ⟨𝑝*, S⃗⟩-strategy by going over the clauses of
Definition 6.5. Clause (1) is indeed obvious, so we begin with (2).

Subclaim 6.10.1.1. Clause (2) holds for �⃗�*.

Proof. Fix some 𝑖 ≤ 𝛽 and let us go over the clauses of Definition 6.3.

(1): This is obvious.

(2): Let (𝑞′, 𝑢′), (𝑞, 𝑢) ∈ dom(𝑆*
𝑖 ) such that 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑢.

Case (a): We need to distinguish two subcases:

I If 𝑞 + 𝑢 � 𝑞 + 𝑡, then 𝑆*
𝑖 (𝑞, 𝑢) = ∅ and so 𝑆*

𝑖 (𝑞, 𝑢) ⊆ 𝑆*
𝑖 (𝑞′, 𝑢′).

I Otherwise, 𝑞 + 𝑢 ≤ 𝑞 + 𝑡 and so 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆′

𝑖(𝑞 + 𝑡, 𝑢𝑞). On the other
hand, since 𝑞′+𝑢′ ≤ 𝑞+𝑢 ≤ 𝑞+𝑡, we have that 𝜛𝑛(𝑞′+𝑢′) ⪯𝑛 𝜛𝑛(𝑞+𝑡) = 𝑡.
In particular, 𝑞′ + 𝑢′ ≤ 𝑞′ + 𝑡 and so 𝑆*

𝑖 (𝑞′, 𝑢′) = 𝑆′
𝑖(𝑞

′ + 𝑡, 𝑢′𝑞′). Now, it is

routine to check that (𝑞+𝑡)+𝑢𝑞 = 𝑞+𝑢𝑞 = 𝑞+𝑢. Similarly, the same applies
to 𝑞′ and 𝑢′𝑞′ . Appealing to Clause (2) for 𝑆′

𝑖 we get 𝑆*
𝑖 (𝑞, 𝑢) ⊆ 𝑆*

𝑖 (𝑞′, 𝑢′).

Case (b)(1): There are several cases to consider:

I Assume 𝑞 + 𝑢 � 𝑞 + 𝑡. Then 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞).

II Suppose 𝑞′ + 𝑢′ � 𝑞 + 𝑡. Then 𝑆*
𝑖 (𝑞′, 𝑢′) = 𝑆𝛼(𝑤(𝑝, 𝑞′), 𝑢′𝑞′). On one

hand, by Clause (6) of Definition 3.3, 𝑤(𝑝, 𝑞′ +𝑢′) ≤ 𝑤(𝑝, 𝑞+𝑢). Combining
[PRS19, Lemma 2.9] with Lemma 3.9, we have 𝑤(𝑝, 𝑞′+𝑢′) = 𝑤(𝑝, 𝑤(𝑝*, 𝑞′+
𝑢′)) = 𝑤(𝑝, 𝑤(𝑝*, 𝑞′)) = 𝑤(𝑝, 𝑞′). Similarly, one shows that 𝑤(𝑝, 𝑞 + 𝑢) =
𝑤(𝑝, 𝑞). Thus, 𝑤(𝑝, 𝑞′) ≤ 𝑤(𝑝, 𝑞). Also, arguing as in page 41, one can prove
that 𝑤(𝑝, 𝑞′) + 𝑢′𝑞′ ≤ 𝑤(𝑝, 𝑞) + 𝑢𝑞. This finally yields

𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) ⊆ 𝑆𝛼(𝑤(𝑝, 𝑞′), 𝑢′𝑞′) = 𝑆*

𝑖 (𝑞′, 𝑢′).

II Otherwise, 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑡, and so 𝑆*
𝑖 (𝑞′, 𝑢′) = 𝑆′

𝑖(𝑞
′ + 𝑡, 𝑢′𝑞′).

Since 𝛼 < 𝑖 and 𝑏E 𝑎, Clauses (3) and (5) of Definition 6.5 for �⃗�′ yield

𝑆𝛼(𝑤(𝑝, 𝑞′ + 𝑡), 𝑢*) = 𝑆′
𝛼(𝑞′ + 𝑡, 𝑢′𝑞′) ⊆ 𝑆′

𝑖(𝑞
′ + 𝑡, 𝑢′𝑞′),

where 𝑢* := 𝜛ℓ(𝑞′)((𝑞
′ + 𝑡) + 𝑢′𝑞′). A routine checking gives (𝑞′ + 𝑡) + 𝑢′𝑞′ =

𝑞′ + 𝑢′𝑞′ , hence 𝑢* = 𝑢′𝑞′ , and thus 𝑆𝛼(𝑤(𝑝, 𝑞′ + 𝑡), 𝑢′𝑞′) ⊆ 𝑆′
𝑖(𝑞

′ + 𝑡, 𝑢′𝑞′).
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Arguing as in the previous case, 𝑤(𝑝, 𝑞′ + 𝑡) = 𝑤(𝑝, 𝑞′). Therefore,

𝑆𝛼(𝑤(𝑝, 𝑞′), 𝑢′𝑞′) ⊆ 𝑆′
𝑖(𝑞

′ + 𝑡, 𝑢′𝑞′) = 𝑆*
𝑖 (𝑞′, 𝑢′).

Once again, 𝑤(𝑝, 𝑞′) + 𝑢′𝑞′ ≤ 𝑤(𝑝, 𝑞) + 𝑢𝑞. Hence, Clause (2) for 𝑆𝛼 yields

𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) ⊆ 𝑆𝛼(𝑤(𝑝, 𝑞′), 𝑢′𝑞′) ⊆ 𝑆*

𝑖 (𝑞′, 𝑢′).

I Assume 𝑞 + 𝑢 ≤ 𝑞 + 𝑡. Then 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑡, as well. In particular,

𝑆*
𝑖 (𝑞, 𝑢) = 𝑆′

𝑖(𝑞 + 𝑡, 𝑢𝑞) ⊆ 𝑆′
𝑖(𝑞

′ + 𝑡, 𝑢′𝑞′) = 𝑆*
𝑖 (𝑞′, 𝑢′),

where the above follows from Clause (2) for 𝑆′
𝑖.
45

Case (b)(2): This is clear using Clause (2) for 𝑆𝑖.

(3): Let (𝑞, 𝑢) ∈ dom(𝑆*
𝑖 ). There are two cases to discuss:

Case (a): As before there are two cases depending on whether 𝑞+𝑢 � 𝑞+𝑡

or not. The first case is obvious, as 𝑆*
𝑖 (𝑞, 𝑢) = ∅. Otherwise, 𝑆*

𝑖 (𝑞, 𝑢) =

𝑆′
𝑖(𝑞 + 𝑡, 𝑢𝑞), and so Clause (3) for 𝑆′

𝑖 yields 𝑞 + 𝑢𝑞 P 𝑆*
𝑖 (𝑞, 𝑢) ∩ �̇�+ = ∅.46

Case (b)(1): There are two cases to consider:

I Assume 𝑞 + 𝑢 � 𝑞 + 𝑡. Then, 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞). Combining

𝑞 + 𝑢𝑞 ≤ 𝑤(𝑝, 𝑞) + 𝑢𝑞 with Clause (3) for 𝑆𝛼, 𝑞 + 𝑢𝑞 P 𝑆*
𝑖 (𝑞, 𝑢) ∩ �̇�+ = ∅.

I Otherwise 𝑞+ 𝑢 ≤ 𝑞+ 𝑡, and so 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆′

𝑖(𝑞+ 𝑡, 𝑢𝑞). As in previous

cases we have 𝑞 + 𝑢𝑞 P 𝑆*
𝑖 (𝑞, 𝑢𝑞) ∩ �̇�+ = ∅.

Case (b)(2): This follows using Clause (3) for 𝑆𝑖.

(4): Let 𝑞 ∈ 𝑊 (𝑝*) and a pair (𝑞′, 𝑢′) ∈ dom(𝑆*
𝑖 ) with 𝑞′ ≤ 𝑞 and ℓ(𝑞) ≥

ℓ(𝑝*) +𝑚𝑖, where 𝑚𝑖 = max{𝑚(𝑆𝛼),𝑚(𝑆𝑖),𝑚(𝑆′
𝑖)} + 1.47

To avoid trivialities, suppose 𝑆*
𝑖 (𝑞′, 𝑢′) ̸= ∅ and put 𝛿 := max(𝑆*

𝑖 (𝑞′, 𝑢′)).
Case (a): Since 𝑆*

𝑖 (𝑞′, 𝑢′) ̸= ∅ we have 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑡. In this case

𝑆*
𝑖 (𝑞′, 𝑢′) = 𝑆′

𝑖(𝑞
′+𝑡, 𝑢′𝑞′). Since 𝑞′+𝑡 ≤ 𝑞, Clause (4) for 𝑆′

𝑖 yields (𝛿, 𝑞) ∈ 𝑅.

Case (b): The verification of the clause in Case (b)(1) and Case (b)(2) is

identical to the previous one. Simply note that we can still invoke Clause (4)
for 𝑆𝑖, 𝑆𝛼 or 𝑆′

𝑖, as 𝑚𝑖 is sufficiently large. �

Subclaim 6.10.1.2. Clause (3) holds for �⃗�*.

Proof. Let 𝑖 < 𝛽 and (𝑞, 𝑢) ∈ dom(𝑆*
𝑖 ). We show that 𝑆*

𝑖 (𝑞, 𝑢) ⊑ 𝑆*
𝑖+1(𝑞, 𝑢).

Case (a): If 𝑞+ 𝑢 � 𝑞+ 𝑡 then 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆*

𝑖+1(𝑞, 𝑢) = ∅ and we are done.

Otherwise, 𝑞 + 𝑢 ≤ 𝑞 + 𝑡, and so 𝑆*
𝑗 (𝑞, 𝑢) = 𝑆′

𝑗(𝑞 + 𝑡, 𝑢𝑞), for 𝑗 ∈ {𝑖, 𝑖 + 1}.

Now, Clause (4) for �⃗�′ yields the desired property.
Case (b)(1): Since 𝛼 < 𝑖 < 𝛽 note that both 𝑆*

𝑖 (𝑞, 𝑢) and 𝑆*
𝑖+1(𝑞, 𝑢) have

been defined according to Case (b)(1). If 𝑞 + 𝑢 � 𝑞 + 𝑡, then 𝑆*
𝑖 (𝑞, 𝑢) =

𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆*
𝑖+1(𝑞, 𝑢) and the desired property follows trivially. In

45See also the argument of Case (a) above.
46Once again, we have used that (𝑞 + 𝑡) + 𝑢𝑞 = 𝑞 + 𝑢𝑞.
47If �⃗� is empty then we convey that 𝑚(𝑆𝛼) := 0.
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the opposite case, 𝑆*
𝑗 (𝑞, 𝑢) = 𝑆′

𝑗(𝑞 + 𝑡, 𝑢𝑞), for 𝑗 ∈ {𝑖, 𝑖+ 1}. Now it suffices

to appeal to Clause (3) for �⃗�′ to infer that 𝑆*
𝑖 (𝑞, 𝑢) ⊑ 𝑆*

𝑖+1(𝑞, 𝑢).
Case (b)(2): In this case 𝑖 ≤ 𝛼 and there are two more subcases:

I If 𝑖 < 𝛼, then 𝑖 + 1 ≤ 𝛼 and thus both 𝑆*
𝑖 (𝑞, 𝑢) and 𝑆*

𝑖+1(𝑞, 𝑢) have

been defined according to Case (b)(2). Now apply Clause (3) for �⃗�.
I Otherwise, 𝑖 = 𝛼. Then 𝑆*

𝛼(𝑞, 𝑢) and 𝑆*
𝛼+1(𝑞, 𝑢) have been defined

according to Case (b)(2) and Case (b)(1), respectively. Namely, 𝑆*
𝛼(𝑞, 𝑢) =

𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) and 𝑆*
𝛼+1(𝑞, 𝑢) depends on whether 𝑞 + 𝑢 ≤ 𝑞 + 𝑡 or not.

If 𝑞 + 𝑢 � 𝑞 + 𝑡, then 𝑆*
𝛼+1(𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆*

𝛼(𝑞, 𝑢). In the

opposite case, 𝑆*
𝛼+1(𝑞, 𝑢) = 𝑆′

𝛼+1(𝑞 + 𝑡, 𝑢𝑞). By Clause (3) for �⃗�′,

𝑆′
𝛼(𝑞 + 𝑡, 𝑢𝑞) ⊑ 𝑆′

𝛼+1(𝑞 + 𝑡, 𝑢𝑞) = 𝑆*
𝛼+1(𝑞, 𝑢).

Also, since 𝑎′E 𝑎, 𝑆′
𝛼(𝑞+ 𝑡, 𝑢𝑞) = 𝑆𝛼(𝑤(𝑝, 𝑞+ 𝑡), 𝑢𝑞). Arguing as in previous

cases, one can show that 𝑤(𝑝, 𝑞 + 𝑡) = 𝑤(𝑝, 𝑞), and thus 𝑆′
𝛼(𝑞 + 𝑡, 𝑢𝑞) =

𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞). Altogether, we arrive the the following chain of inclusions:

𝑆*
𝛼(𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆′

𝛼(𝑞+𝑡, 𝑢𝑞) ⊑ 𝑆′
𝛼+1(𝑞+𝑡, 𝑢𝑞) = 𝑆*

𝛼+1(𝑞, 𝑢). �

Subclaim 6.10.1.3. Clause (4) holds for �⃗�*.

Proof. Let 𝑖 < 𝛽 and (𝑞, 𝑢), (𝑞′, 𝑢′) ∈ dom(𝑆*
𝑖 ) such that 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑢.

There are two main cases to consider, along with their respective subcases.
Case (a): The case 𝑞+𝑢 � 𝑞+ 𝑡 is obvious as both 𝑆*

𝑖 (𝑞, 𝑢) and 𝑆*
𝑖+1(𝑞, 𝑢)

are empty. So, assume that 𝑞 + 𝑢 ≤ 𝑞 + 𝑡. Then, 𝑆*
𝑗 (𝑞, 𝑢) = 𝑆′

𝑗(𝑞 + 𝑡, 𝑢𝑞)

and 𝑆*
𝑗 (𝑞′, 𝑢′) = 𝑆′

𝑗(𝑞
′ + 𝑡, 𝑢′𝑞′) for 𝑗 ∈ {𝑖, 𝑖+ 1}. Appealing to Clause (4) of

Definition 6.5 for �⃗�′ the desired property follows.
Case (b)(1): Since 𝛼 < 𝑖 < 𝛽 then both 𝑆*

𝑖 (𝑞, 𝑢) (resp. 𝑆*
𝑖 (𝑞′, 𝑢′)) and

𝑆*
𝑖+1(𝑞, 𝑢) (resp. 𝑆*

𝑖+1(𝑞
′, 𝑢′)) have been defined according to Case (b)(1).

I If 𝑞 + 𝑢 � 𝑞 + 𝑡, then, 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆*

𝑖+1(𝑞, 𝑢), and so
𝑆*
𝑖+1(𝑞, 𝑠) ∖ 𝑆*

𝑖 (𝑞, 𝑠) = ∅. Thus, the desired property holds.
I Otherwise, 𝑞+𝑢 ≤ 𝑞+ 𝑡 and so 𝑆*

𝑗 (𝑞, 𝑢) = 𝑆′
𝑗(𝑞+ 𝑡, 𝑢𝑞) for 𝑗 ∈ {𝑖, 𝑖+1}.

The same applies to 𝑆*
𝑗 (𝑞′, 𝑢′). Note that (𝑞+ 𝑡) +𝑢𝑞 = 𝑞+𝑢𝑞 and also that

(𝑞′ + 𝑡) +𝑢′𝑞′ = 𝑞′ +𝑢′𝑞′ . Invoking Clause (4) for �⃗�′ we get the desired result.

Case (b)(2): In this case we have 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑢𝑞) and 𝑆*

𝑖 (𝑞′, 𝑢′) =

𝑆𝑖(𝑤(𝑝, 𝑞′), 𝑢′𝑞′). On the contrary, the definition of 𝑆*
𝑖+1(𝑞, 𝑢) and 𝑆*

𝑖+1(𝑞
′, 𝑢′)

depends on whether 𝑖 + 1 ≤ 𝛼 or not. If 𝑖 < 𝛼 then 𝑖 + 1 ≤ 𝛼 and so
𝑆*
𝑖+1(𝑞, 𝑢) = 𝑆𝑖+1(𝑤(𝑝, 𝑞), 𝑢𝑞) and 𝑆*

𝑖+1(𝑞
′, 𝑢′) = 𝑆𝑖+1(𝑤(𝑝, 𝑞′), 𝑢′𝑞′). Using

Clause (4) for the sequence �⃗� the result follows as usual.
So, let us assume that 𝑖 = 𝛼. Then both 𝑆*

𝛼+1(𝑞, 𝑢) and 𝑆*
𝛼+1(𝑞

′, 𝑢′) have
been defined according to Case (b)(1). There are two more subcases:
I Assume that 𝑞 + 𝑢 ≤ 𝑞 + 𝑡. In this case, 𝑞′ + 𝑢′ ≤ 𝑞 + 𝑡 and so

𝑆*
𝛼+1(𝑞, 𝑢) = 𝑆′

𝛼+1(𝑞 + 𝑡, 𝑢𝑞) and 𝑆*
𝛼+1(𝑞

′, 𝑢′) = 𝑆′
𝛼+1(𝑞

′ + 𝑡, 𝑢′𝑞′). Appealing

to Clause (4) for �⃗�′ it follows that

𝑆*
𝛼+1(𝑞, 𝑢) ∖ 𝑆*

𝛼(𝑞, 𝑢) ⊑ 𝑆*
𝛼+1(𝑞

′, 𝑢′) ∖ 𝑆*
𝛼(𝑞′, 𝑢′).
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I Otherwise, 𝑆*
𝛼+1(𝑞, 𝑢) = 𝑆𝛼(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆*

𝛼(𝑞, 𝑢). This yields the
desired property. �

Finally, one verifies that Clause (5) holds for �⃗�* by appealing to the

corresponding clauses for �⃗� and �⃗�′.

Combining the previous subclaims it follows that 𝑎* = (𝑝*, �⃗�*) is a con-
dition in A≥𝑛. We now check that 𝑎* has the required properties:

Subclaim 6.10.1.4. 𝑎* E𝜍𝑛 𝑎.

Proof. Let us go over the clauses of Definition 6.6. By our choice, 𝑝* ≤ 𝑝

and dom(�⃗�*) ≥ dom(�⃗�), so that both Clauses (a) and (b) are true. Now

assume that �⃗� is non-empty and let 𝑖 ∈ dom(�⃗�) and (𝑞, 𝑢) ∈ dom(𝑆*
𝑖 ).

Then by definition of �⃗�*, 𝑆*
𝑖 (𝑞, 𝑢) = 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑢𝑞), so that Clause (c) holds.

Altogether, 𝑎* E 𝑎. Finally, since 𝑝* ≤𝜛𝑛 𝑝 it follows that 𝑎* E𝜍𝑛 𝑎. �

Subclaim 6.10.1.5. 𝑎* + 𝑡 = 𝑎′.

Proof. By Lemma 5.6, 𝑎* + 𝑡 = t(𝑎*)(𝑝* + 𝑡). Also, since 𝑝* + 𝑡 = 𝑝′,
𝑎* + 𝑡 = t(𝑎*)(𝑝′). Thus, we are left with showing that t(𝑎*)(𝑝′) = 𝑎′.

Put t(𝑎*)(𝑝′) = (𝑝′, �⃗�). Let 𝑖 ≤ 𝛽 and (𝑞, 𝑢) ∈ dom(𝑄𝑖). By virtue of
Definition 6.7(3) we have that 𝑞 ≤ 𝑝′ and 𝑢 ⪯𝑚 𝜛𝑚(𝑞), hence 𝑞+ 𝑢 ≤ 𝑞+ 𝑡.

Case (a): In this case we have the following chain of equalities:

𝑄𝑖(𝑞, 𝑢) = 𝑆*
𝑖 (𝑤(𝑝*, 𝑞), 𝑢𝑞) = 𝑆′

𝑖(𝑤(𝑝*, 𝑞) + 𝑡, 𝑢𝑞) = 𝑆′
𝑖(𝑞, 𝑢𝑞) = 𝑆′

𝑖(𝑞, 𝑢).

The first equality follows from Definition 6.7(3)(*), the third from Lemma
3.8(1) and the right-most one from Definition 6.3(2) and 𝑞 + 𝑢𝑞 = 𝑞 + 𝑢.

Case (b): If 𝛼 < 𝑖 ≤ 𝛽 then arguing as before 𝑄𝑖(𝑞, 𝑢) = 𝑆′
𝑖(𝑞, 𝑢).

Otherwise, 𝑖 ≤ 𝛼 and we have the following chain of equalities

𝑄𝑖(𝑞, 𝑢) = 𝑆*
𝑖 (𝑤(𝑝*, 𝑞), 𝑢𝑞) = 𝑆𝑖(𝑤(𝑝, 𝑞), 𝑢𝑞) = 𝑆′

𝑖(𝑞, 𝑢𝑞) = 𝑆′
𝑖(𝑞, 𝑢),

For the third equality we used that 𝑎′ E 𝑎 and 𝑢𝑞 = 𝜛ℓ(𝑞)(𝑞 + 𝑢𝑞). �

The above subclaims yield the proof of the claim. �

The above claim finishes the proof of the lemma. �

Corollary 6.11. The pair (t, 𝜋) is a super nice forking projection from
(A, ℓA, 𝑐A, �⃗�) to (P, ℓ, 𝑐, �⃗�).

Proof. First, (t, 𝜋) is a forking projection from (A, ℓA, 𝑐A, �⃗�) to (P, ℓ, 𝑐, �⃗�)
by virtue of Lemma 6.9. Second, �⃗� = �⃗� ∘ 𝜋 by our choice in Definition 6.7.
Besides, Lemma 6.10 shows that for each 𝑛 < 𝜔, 𝜍𝑛 is a nice projection from
A≥𝑛 and S𝑛. Moreover, Claim 6.10.1 actually shows that (t, 𝜋) fulfils the
requirement appearing in Definition 5.4. This completes the proof. �

Next, we introduce a map tp and we will latter prove that it defines a
nice type over (t, 𝜋). Afterwards, we will also show that tp witness that the
pair (t, 𝜋) has the weak mixing property.
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Definition 6.12. Define a map tp : 𝐴→ <𝜇𝜔, as follows.

Given 𝑎 = (𝑝, �⃗�) in 𝐴, write �⃗� as ⟨𝑆𝑖 | 𝑖 < 𝛽⟩, and then let

tp(𝑎) := ⟨𝑚(𝑆𝑖) | 𝑖 < 𝛽⟩.

We shall soon verify that tp is a nice type, but will use the mtp notation
of Definition 5.7 from the outset. In particular, for each 𝑛 < 𝜔, we will have
Å𝑛 := (𝐴𝑛,E), with 𝐴𝑛 := {𝑎 ∈ 𝐴 | 𝜋(𝑎) ∈ 𝑃𝑛 & mtp(𝑎) = 0}. We will

often refer to the 𝑚(𝑆𝑖)’s as the delays of the strategy �⃗�.

Arguing on the lines of [PRS19, Lemma 6.15] one can prove the following:

Fact 6.13. For each 𝑛 < 𝜔, Å𝜋𝑛 is a 𝜇-directed closed forcing.

Lemma 6.14. The map tp is a nice type over (t, 𝜋).

Proof. The verification of Clauses (1)–(6) of Definition 5.9 is essentially the
same as in [PRS20, Lemma 4.15]. A moment’s reflection makes clear that
it suffices to prove Clause (8) to complete the lemma.

Let 𝑎 = (𝑝, �⃗�) ∈ 𝐴 and to avoid trivialities, let us assume that �⃗� ̸= ∅.
I Suppose that 𝑝 is incompatible with 𝑟⋆. Then, by Remark 6.4, for all

𝑖 < dom(tp(𝑎)) and all (𝑞, 𝑡) dom(𝑆𝑖), 𝑆𝑖(𝑞, 𝑡) = ∅. Therefore, mtp(𝑎) = 0.

Using Definition 3.3(9), let 𝑝′ ≤�⃗� 𝑝 be in 𝑃ℓ(𝑝) and set 𝑏 := t(𝑎)(𝑝′). Com-
bining Clauses (2) and (3) of Definition 5.7 with mtp(𝑎) = 0 it is immediate

that mtp(𝑏) = 0. Also, 𝜋(𝑏) = 𝑝′ ∈ 𝑃ℓ(𝑝). Thus, 𝑏 ∈ 𝐴ℓA(𝑎) and 𝑏E�⃗� 𝑎.
I Suppose 𝑝 ≤ 𝑟⋆. Appealing to Clause (5) of Definition 3.3 let 𝛾 < 𝜇 be

above sup𝑖<dom(�⃗�){𝑆𝑖(𝑞, 𝑠) | (𝑞, 𝑠) ∈ dom(𝑆𝑖)} and dom(�⃗�). By Lemma 6.2,

let 𝛾 ∈ (𝛾, 𝜇) and 𝑝 ≤�⃗� 𝑝 such that (𝛾, 𝑝) ∈ 𝑅. Using Definition 3.3(9) we

may further assume that 𝑝 belongs to 𝑃ℓ(𝑝).

Next, define a sequence 𝑇 = ⟨𝑇𝑖 | 𝑖 ≤ 𝛾⟩ with

dom(𝑇𝑖) := {(𝑞, 𝑢) | 𝑞 ∈𝑊 (𝑝) &𝑢 ∈ ∪ℓ(𝑝*)≤𝑚≤ℓ(𝑞) S𝑚 ↓ 𝜛𝑚(𝑞)},

as

𝑇𝑖(𝑞, 𝑢) :=

{︃
𝑆𝑖(𝑤(𝑝, 𝑞), 𝑢𝑞), if 𝑖 < dom(�⃗�),

𝑆max(dom(�⃗�))(𝑤(𝑝, 𝑞), 𝑢𝑞) ∪ {𝛾}, otherwise.

Arguing as in Claim 6.10.1 one shows that (𝑝, 𝑇 ) is a condition in Åℓ(𝑝).
Clearly 𝑏E�⃗� 𝑎. Therefore, Å𝜍𝑛𝑛 is dense in A𝜍𝑛𝑛 . �

We now check that the pair (t, 𝜋) has the weak mixing property, as
witnessed by the type tp given in Definition 6.12 (see Definition 5.13).

Lemma 6.15. The pair (t, 𝜋) has the weak mixing property as witnessed
by the type tp from Definition 6.12.

Proof. Let 𝑎, �⃗�, 𝑝′ ≤0 𝜋(𝑎), 𝑔 : 𝑊𝑛(𝜋(𝑎)) → A ↓ 𝑎 and 𝜄 be as in the state-
ment of the Weak Mixing Property (see Definition 5.13). More precisely,
�⃗� = ⟨𝑟𝜉 | 𝜉 < 𝜒⟩ is a good enumeration of 𝑊𝑛(𝜋(𝑎)), ⟨𝜋(𝑔(𝑟𝜉)) | 𝜉 < 𝜒⟩
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is diagonalizable with respect to �⃗� (as witnessed by 𝑝′) and 𝑔 is a function
witnessing Clauses (3)–(5) of Definition 5.13 with respect to the type tp.

Put 𝑎 := (𝑝, �⃗�) and for each 𝜉 < 𝜒, set (𝑝𝜉, �⃗�
𝜉) := 𝑔(𝑟𝜉).

Claim 6.15.1. If 𝜄 ≥ 𝜒 then there is a condition 𝑏 in A as in the conclusion
Definition 5.13.

Proof. If 𝜄 ≥ 𝜒 then Clause (3) yields dom(tp(𝑔(𝑟𝜉)) = 0 for all 𝜉 < 𝜒.

Hence, Clause (4) of Definition 5.7 yields 𝑔(𝑟𝜉) = ⌈𝑝𝜉⌉A for all 𝜉 < 𝜒. Since

𝑔(𝑟𝜉)E 𝑎 this in particular implies that 𝑎 = ⌈𝑝⌉A.

Set 𝑏 := ⌈𝑝′⌉A. Clearly, 𝜋(𝑏) = 𝑝′ and 𝑏 E0 𝑎. Let 𝑞′ ∈ 𝑊𝑛(𝑝′). By
Clause (2) of Definition 5.13, 𝑞′ ≤0 𝑝𝜉, where 𝜉 is such that 𝑟𝜉 = 𝑤(𝑝, 𝑞′).

Finally, Definition 5.1(6) yields t(𝑏)(𝑞′) = ⌈𝑞′⌉A E0 ⌈𝑝𝜉⌉A = 𝑔(𝑟𝜉). �

So, hereafter let us assume that 𝜄 < 𝜒. For each 𝜉 ∈ [𝜄, 𝜒), Clause (3) of

Definition 5.13 and Definition 6.12 together imply that dom(�⃗�𝜉) = 𝛼𝜉+1 for
some 𝛼𝜉 < 𝜇. Moreover, Clause (3) yields sup𝜄≤𝜂<𝜉 𝛼𝜂 < 𝛼𝜉 for all 𝜉 ∈ (𝜄, 𝜒).

Also, the same clause implies that 𝑔(𝑟𝜉) = ⌈𝑝𝜉⌉A, hence �⃗�𝜉 = ∅, for all 𝜉 < 𝜄.

Let ⟨𝑠𝜏 | 𝜏 < 𝜃⟩ be the good enumeration of 𝑊𝑛(𝑝′). By Definition 3.3(5),
𝜃 < 𝜇. For each 𝜏 < 𝜃, set 𝑟𝜉𝜏 := 𝑤(𝑝, 𝑠𝜏 ). By Definition 5.13(1),

𝑠𝜏 ≤0 𝜋(𝑔(𝑤(𝑝, 𝑠𝜏 ))) = 𝜋(𝑔(𝑟𝜉𝜏 )) = 𝑝𝜉𝜏 ,

for each 𝜏 < 𝜃. Set 𝛼′ := sup𝜄≤𝜉<𝜒 𝛼𝜉 and 𝛼 := sup(dom(�⃗�)).48 By
regularity of 𝜇 and Definition 5.13(3) it follows that 𝛼 < 𝛼′ < 𝜇. Our

goal is to define a sequence 𝑇 = ⟨𝑇𝑖 | 𝑖 ≤ 𝛼′⟩, with dom(𝑇𝑖) := {(𝑞, 𝑢) |
𝑞 ∈ 𝑊 (𝑝′) &𝑢 ∈ ∪ℓ(𝑝′)≤𝑚≤ℓ(𝑞) S𝑚 ↓ 𝜛𝑚(𝑞)} for 𝑖 ≤ 𝛼′, such that 𝑏 := (𝑝′, 𝑇 )
is a condition in A satisfying the conclusion of the weak mixing property.

As ⟨𝑠𝜏 | 𝜏 < 𝜃⟩ is a good enumeration of the 𝑛𝑡ℎ-level of the 𝑝′-tree
𝑊 (𝑝′), Lemma 3.6(2) entails that, for each 𝑞 ∈ 𝑊 (𝑝′), there is a unique
ordinal 𝜏𝑞 < 𝜃, such that 𝑞 is comparable with 𝑠𝜏𝑞 . It thus follows from
Lemma 3.6(3) that, for all 𝑞 ∈ 𝑊 (𝑝′), ℓ(𝑞) − ℓ(𝑝′) ≥ 𝑛 iff 𝑞 ∈ 𝑊 (𝑠𝜏𝑞).

Moreover, for each 𝑞 ∈ 𝑊≥𝑛(𝑝′), 𝑞 ≤ 𝑠𝜏𝑞 ≤0 𝑝𝜉𝜏𝑞 , hence 𝑤(𝑝
𝜉𝜏𝑞
, 𝑞) is well-

defined. Now, for all 𝑖 ≤ 𝛼′ and 𝑞 ∈𝑊 (𝑝′), let:

𝑇𝑖(𝑞, 𝑢) :=

⎧⎪⎪⎨⎪⎪⎩
𝑆
𝜉𝜏𝑞
min{𝑖,𝛼𝜉𝜏𝑞

}(𝑤(𝑝𝜉𝜏𝑞 , 𝑞), 𝑢𝑞), if 𝑞 ∈𝑊 (𝑠𝜏𝑞) & 𝜄 ≤ 𝜉𝜏𝑞 ;

𝑆min{𝑖,𝛼}(𝑤(𝑝, 𝑞), 𝑢𝑞), if 𝑞 /∈𝑊 (𝑠𝜏𝑞) & 𝛼 > 0;

∅, otherwise.

Claim 6.15.2. Let 𝑖 ≤ 𝛼′. Then 𝑇𝑖 is a labeled 𝑝′-tree.

Proof. Fix (𝑞, 𝑢) ∈ 𝑑𝑜𝑚(𝑇𝑖) and let us go over the Clauses of Definition 6.3.
The verification of (1), (2) and (3) are similar to that of [PRS19, Claim 6.16.1]
and, actually, also to that of Claim 6.10.1 above. The reader is thus referred
there for more details. We just elaborate on Clause (4).

48Note that 𝑎 might be ⌈𝑝⌉A, so we are allowing 𝛼 = 0.
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For each 𝑖 < 𝛼′, set 𝜉(𝑖) := min{𝜉 ∈ [𝜄, 𝜒) | 𝑖 ≤ 𝛼𝜉}.

Subclaim 6.15.2.1. If 𝑖 < 𝛼′, then

𝑚(𝑇𝑖) ≤ 𝑛+ max{mtp(𝑎), sup𝜄≤𝜂<𝜉(𝑖) mtp(𝑔(𝑟𝜂)), tp(𝑔(𝑟𝜉(𝑖))(𝑖)}.

Proof. Let 𝑞 ∈𝑊𝑘(𝑝
′) and (𝑞′, 𝑢′) be a pair in dom(𝑇𝑖) with 𝑞′ ≤ 𝑞, where

𝑘 ≥ 𝑛+ max{mtp(𝑎), sup𝜄≤𝜂<𝜉(𝑖) mtp(𝑔(𝑟𝜂)), tp(𝑔(𝑟𝜉(𝑖))(𝑖)}.

Suppose that 𝑇𝑖(𝑞
′, 𝑢′) ̸= ∅. Denote 𝜏 := 𝜏𝑞′ and 𝛿 := max(𝑇𝑖(𝑞

′, 𝑢′)).
Since ℓ(𝑞) ≥ ℓ(𝑝′) + 𝑛, note that 𝑞, 𝑞′ ∈ 𝑊 (𝑠𝜏 ). Also, 𝜄 ≤ 𝜉𝜏 , as otherwise
𝑇𝑖(𝑞

′, 𝑢′) = ∅. Thus, we fall into the first option of the casuistic getting

𝑇𝑖(𝑞
′, 𝑢′) = 𝑆𝜉𝜏min{𝑖,𝛼𝜉𝜏 }

(𝑤(𝑝𝜉𝜏 , 𝑞
′), 𝑢′𝑞′).

I Assume that 𝜉𝜏 < 𝜉(𝑖). Then, 𝛼𝜉𝜏 < 𝑖 and so

𝑇𝑖(𝑞
′, 𝑢′) = 𝑆𝜉𝜏𝛼𝜉𝜏

(𝑤(𝑝𝜉𝜏 , 𝑞
′), 𝑢′𝑞′).

We have that 𝑤(𝑝𝜉𝜏 , 𝑞
′) ≤ 𝑤(𝑝𝜉𝜏 , 𝑞) is a pair in 𝑊𝑘−𝑛(𝑝𝜉𝜏 ) and that the set

𝑆𝜉𝜏𝛼𝜉𝜏
(𝑤(𝑝𝜉𝜏 , 𝑞

′), 𝑢′𝑞′) is non-empty. Also, 𝑘 − 𝑛 ≥ mtp(𝑔(𝑟𝜉𝜏 )) = 𝑚(𝑆𝜉𝜏𝛼𝜉𝜏
).

So, by Clause (4) for 𝑆𝜉𝜏𝛼𝜉𝜏
, we have that (𝛿, 𝑤(𝑝𝜉𝜏 , 𝑞)) ∈ 𝑅. Finally, since

𝑞 ≤ 𝑤(𝑝𝜉𝜏 , 𝑞), we have (𝛿, 𝑞) ∈ 𝑅, as desired.

I Assume that 𝜉(𝑖) ≤ 𝜉𝜏 . Then 𝑖 ≤ 𝛼𝜉(𝑖) ≤ 𝛼𝜉𝜏 , and thus

𝑇𝑖(𝑞
′, 𝑢′) = 𝑆𝜉𝜏𝑖 (𝑤(𝑝𝜉𝜏 , 𝑞

′), 𝑢′𝑞′).

If dom(tp(𝑎)) ≤ 𝑖 ≤ sup𝜄≤𝜂<𝜉(𝑖) 𝛼𝜂, by Clause (4) of Definition 5.13,

tp(𝑔(𝑟𝜉𝜏 ))(𝑖) ≤ mtp(𝑎).

Otherwise, if sup𝜄≤𝜂<𝜉(𝑖) 𝛼𝜂 < 𝑖 ≤ 𝛼𝜉(𝑖), again by Definition 5.13(4)

tp(𝑔(𝑟𝜉𝜏 ))(𝑖) ≤ max{mtp(𝑎), tp(𝑔(𝑟𝜉(𝑖))(𝑖)}.

In either case, 𝑤(𝑝𝜉𝜏 , 𝑞) ∈ 𝑊𝑘−𝑛(𝑝𝜉𝜏 ) and 𝑘 − 𝑛 ≥ tp(𝑔(𝑟𝜉𝜏 ))(𝑖) = 𝑚(𝑆𝜉𝜏𝑖 ).

By Clause (4) of 𝑆𝜉𝜏𝑖 we get that (𝛿, 𝑤(𝑝𝜉𝜏 , 𝑞)) ∈ 𝑅, hence (𝛿, 𝑞) ∈ 𝑅. �

Subclaim 6.15.2.2. 𝑚(𝑇𝛼′) ≤ 𝑛+ sup𝜄≤𝜉<𝜒 mtp(𝑔(𝑟𝜉)).

Proof. Let 𝑞 ∈ 𝑊𝑘(𝑝
′) and (𝑞′, 𝑢′) ∈ dom(𝑇𝑖) with 𝑞′ ≤ 𝑞, where 𝑘 ≥ 𝑛 +

sup𝜄≤𝜉<𝜒 mtp(𝑔(𝑟𝜉)). Suppose that 𝑇𝛼′(𝑞′, 𝑢′) ̸= ∅ and denote 𝜏 := 𝜏𝑞′ and
𝛿 := max(𝑇𝛼′(𝑞′, 𝑢′)). Since 𝑘 ≥ 𝑛, 𝑞, 𝑞′ ∈𝑊 (𝑠𝜏 ). Also, 𝜄 ≤ 𝜉𝜏 , as otherwise

𝑇𝛼′(𝑞′, 𝑢′) = ∅. So, 𝑇𝛼′(𝑞′, 𝑢′) = 𝑆𝜉𝜏𝛼𝜉𝜏
(𝑤(𝑝𝜉𝜏 , 𝑞

′), 𝑢′𝑞′). Then 𝑤(𝑝𝜉𝜏 , 𝑞
′) ≤

𝑤(𝑝𝜉𝜏 , 𝑞) is a pair in 𝑊𝑘−𝑛(𝑝𝜉𝜏 ) with 𝑘 − 𝑛 ≥ mtp(𝑔(𝑟𝜉𝜏 )) = 𝑚(𝑆𝜉𝜏𝛼𝜉𝜏
). So,

Definition 6.3(4) regarded with respect to 𝑆𝜉𝜏𝛼𝜉𝜏
yields (𝛿, 𝑤(𝑝𝜉𝜏 , 𝑞)) ∈ 𝑅.

Once again, it follows that (𝛿, 𝑞) ∈ 𝑅, as wanted. �

The combination of the above subclaims yield Clause (4) for 𝑇𝑖. �

Claim 6.15.3. The sequence 𝑇 is a 𝑝′-strategy.
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Proof. We need to go over the clauses of Definition 6.5. However, Clause (1)
is trivial, Clause (2) is established in the preceding claim, and Clauses (3)

and (5) follow from the corresponding ones of �⃗� and the �⃗�𝑟
𝜏
’s. Finally,

Clause (4) can be proved as in [PRS19, Claim 6.16.2]. Indeed, for this latter
verification it is convenient to bear in mind that 𝛼 > 0 yields 𝜄 = 0. �

Thus, we have established that 𝑏 := (𝑝′, 𝑇 ) is a legitimate condition in A.

Claim 6.15.4. Let 𝜏 < 𝜃. For each 𝑞 ∈𝑊𝑛(𝑠𝜏 ), 𝑤(𝑝′, 𝑞) = 𝑤(𝑠𝜏 , 𝑞) = 𝑞.

Proof. The first equality can be proved exactly as in [PRS19, Claim 6.16.4].
For the second, notice that 𝑞 and 𝑤(𝑠𝜏 , 𝑞) are conditions in 𝑊 (𝑠𝜏 ) with the
same length. Hence, Lemma 3.6(2) yields 𝑞 = 𝑤(𝑠𝜏 , 𝑞), as wanted. �

Claim 6.15.5. 𝜋(𝑏) = 𝑝′ and 𝑏E0 𝑎.

Proof. The verification is routine. For details we refer the reader to [PRS19,
Claim 6.16.3], where a similar statement is proved. �

Claim 6.15.6. For each 𝜏 < 𝜃, t(𝑏)(𝑠𝜏 )E0 𝑔(𝑟𝜉𝜏 ).49

Proof. Let 𝜏 < 𝜃 and and denote t(𝑏)(𝑠𝜏 ) = (𝑠𝜏 , 𝑇𝜏 ). By Lemma 6.9(5) we
have that 𝜋(t(𝑏)(𝑠𝜏 )) = 𝑠𝜏 ≤0 𝑝𝜉𝜏 , so Clause (a) of Definition 6.6 holds.

If 𝜉𝜏 < 𝜄, then t(𝑏)(𝑠𝜏 ) E0 ⌈𝑝𝜉𝜏 ⌉
A = 𝑔(𝑟𝜉𝜏 ), and we are done. So, let

us assume that 𝜄 ≤ 𝜉𝜏 . Let 𝑖 ≤ 𝛼𝜉𝜏 and 𝑞 ∈ 𝑊 (𝑠𝜏 ). By Definition 6.7(*),
𝑇 𝜏𝑖 (𝑞, 𝑢) = 𝑇𝑖(𝑤(𝑝′, 𝑞), 𝑢𝑞) and by Claim 6.15.4, 𝑤(𝑝′, 𝑞) = 𝑤(𝑠𝜏 , 𝑞) = 𝑞,
hence 𝑇 𝜏𝑖 (𝑞, 𝑢) = 𝑇𝑖(𝑞, 𝑢𝑞) = 𝑇𝑖(𝑞, 𝑢).50 Also 𝑟𝜉𝜏𝑞 = 𝑤(𝑝, 𝑠𝜏𝑞) = 𝑤(𝑝, 𝑠𝜏 ) =

𝑟𝜉𝜏 , where the second equality follows from 𝑞 ∈𝑊 (𝑠𝜏 ). Therefore,

𝑇 𝜏𝑖 (𝑞, 𝑢) = 𝑆𝜉𝜏min{𝑖,𝛼𝜉𝜏 }
(𝑤(𝑝𝜉𝜏 , 𝑞), 𝑢𝑞) = 𝑆𝜉𝜏𝑖 (𝑤(𝑝𝜉𝜏 , 𝑞), 𝑢𝑞).

Altogether, t(𝑏)(𝑠𝜏 )E0 𝑔(𝑟𝜉𝜏 ), as wanted. �

The combination of the above claims yield the proof of the lemma. �

Let us sum up what we have shown so far:

Corollary 6.16. (t, 𝜋) is a super nice forking projection from (A, ℓA, 𝑐A, �⃗�)
to (P, ℓ, 𝑐, �⃗�) having the weak mixing property.

In particular, (A, ℓA, 𝑐A, �⃗�) is a (Σ, S⃗)-Prikry, (A, ℓA) has property 𝒟,
1lA A 𝜇 = �̌�+ and �⃗� is a coherent sequence of nice projections.

Proof. The first part follows from Corollary 6.11 and Lemma 6.15. Likewise,
(A, ℓA) has property 𝒟 by virtue of Lemma 5.15, and �⃗� is coherent by virtue
of Lemma 5.17 (see also Setup 6). Thus, we are left with arguing that

(A, ℓA, 𝑐A, �⃗�) is (Σ, S⃗)-Prikry and that 1lA A 𝜇 = �̌�+. All the Clauses of
Definition 3.3 with the possible exception of (2), (7) and (9) follow from
Theorem 5.11. Also, from this result and the assumptions in Setup 6 it

49Recall that ⟨𝑠𝜏 | 𝜏 < 𝜃⟩ was a good enumeration of 𝑊𝑛(𝑝
′).

50For the second equality we use Definition 6.3(2) for 𝑇𝑖 and 𝑞 + 𝑢 = 𝑞 + 𝑢𝑞.
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follows that 1lA A 𝜇 = �̌�+. Clauses (2) and (9) follow from Lemma 5.16,
Fact 6.13 and Lemma 6.14. Finally, Clause (7) follows from Lemma 5.15. �

Our next task is to show that after forcing with A the P-name �̇�+ ceases
to be stationary. In this respect recall the blanket assumptions of the section
displayed in page 38.

Lemma 6.17. ⌈𝑟⋆⌉A A “�̇�+ is nonstationary”.

Proof. Let 𝐺 be A-generic over 𝑉 , with ⌈𝑟⋆⌉A ∈ 𝐺. Work in 𝑉 [𝐺]. Let �̄�
(resp. 𝐻𝑛) denote the generic filter for P (resp. S𝑛) induced by 𝜋 (resp. 𝜍𝑛)

and 𝐺. For all 𝑎 = (𝑝, �⃗�) ∈ 𝐺 and 𝑖 ∈ dom(�⃗�) write

𝑑𝑖𝑎 :=
⋃︁

{𝑆𝑖(𝑞, 𝑡) | 𝑞 ∈ �̄�∩𝑊 (𝑝) &∃𝑛 ∈ [ℓ(𝑝), ℓ(𝑞)] (𝑡 ⪯𝑛 𝜛𝑛(𝑞𝑛) ∧ 𝑡 ∈ 𝐻𝑛)},

where ⟨𝑞𝑛 | 𝑛 ≥ ℓ(𝑝)⟩ is the increasing enumeration of �̄�∩𝑊 (𝑝) (see Lemma 3.6).
Then, let

𝑑𝑎 :=

{︃
𝑑
max(dom(�⃗�))
𝑎 , if �⃗� ̸= ∅;

∅, otherwise.

Claim 6.17.1. Suppose that 𝑎 = (𝑝, �⃗�) ∈ 𝐺. In 𝑉 [�̄�], for all 𝑖 ∈ dom(�⃗�),

the ordinal closure cl(𝑑𝑖𝑎) of 𝑑𝑖𝑎 is disjoint from (�̇�+)𝐺.

Proof. To avoid trivialities we shall assume that �⃗� ̸= ∅. We prove the

claim by induction on 𝑖 ∈ dom(�⃗�). The base case 𝑖 = 0 is trivial, as
𝑆0 : 𝑊 (𝑝) → {∅} (see Definition 6.5(5)). So, let us assume by induction that

cl(𝑑𝑗𝑎) is disjoint from (�̇�+)𝐺 for every 0 ≤ 𝑗 < 𝑖.

Let 𝛾 ∈ cl(𝑑𝑖𝑎) ∖
⋃︀
𝑗<𝑖 cl(𝑑𝑗𝑎). By virtue of Clause (2) of Definition 6.3

applied to 𝑆𝑖, we may further assume that 𝛾 /∈ 𝑑𝑖𝑎.

Succesor case: Suppose that 𝑖 = 𝑗 + 1. There are two cases to discuss:

I Assume cf(𝛾) = 𝜔. Working in 𝑉 [�̄�], we have 𝛾 = sup𝑛<𝜔 𝛾𝑛, where
for each 𝑛 < 𝜔, there is (𝑞𝑛, 𝑡𝑛), such that 𝑞𝑛 ∈ �̄� ∩𝑊 (𝑝), 𝑡𝑛 ⪯𝑘 𝜛𝑘(𝑞𝑛)
with 𝑡𝑛 ∈ 𝐻𝑘 for some 𝑘 ∈ [ℓ(𝑝), ℓ(𝑞𝑛)], and 𝛾𝑛 ∈ 𝑆𝑗+1(𝑞𝑛, 𝑡𝑛) ∖ 𝑆𝑗(𝑞𝑛, 𝑡𝑛).
Strengthening if necessary, we may assume 𝑞𝑛 + 𝑡𝑛 ≤ 𝑞𝑚 + 𝑡𝑚 for 𝑚 ≤ 𝑛.51

For each 𝑛 < 𝜔 set 𝛿𝑛 := max(𝑆𝑗+1(𝑝𝑛, 𝑡𝑛)). Clearly, 𝛾 ≤ sup𝑛<𝜔 𝛿𝑛.
We claim that 𝛾 = sup𝑛<𝜔 𝛿𝑛: Assume to the contrary that this is not

the case. Then, there is 𝑛0 < 𝜔 such that 𝛾𝑚 < 𝛿𝑛0 for all 𝑚 < 𝜔.
Let 𝑚 ≥ 𝑛0. Then, 𝛾𝑚 ∈ 𝑆𝑗+1(𝑞𝑚, 𝑡𝑚) ∖ 𝑆𝑗(𝑞𝑚, 𝑡𝑚). Also, since 𝛾𝑛0 /∈
𝑆𝑗(𝑞𝑛0 , 𝑡𝑛0), hence 𝑆𝑗+1(𝑞𝑛0 , 𝑡𝑛0) ̸= 𝑆𝑗(𝑞𝑛0 , 𝑡𝑛0), Definition 6.5(3) for �⃗� yields
𝛿0 ∈ 𝑆𝑗+1(𝑞𝑛0 , 𝑡𝑛0) ∖ 𝑆𝑗(𝑞𝑛0 , 𝑡𝑛0). By virtue of Clause (4) of Definition 6.5,

𝑆𝑗+1(𝑞𝑛0 , 𝑡𝑛0) ∖ 𝑆𝑗(𝑞𝑛0 , 𝑡𝑛0) ⊑ 𝑆𝑗+1(𝑞𝑚, 𝑡𝑚) ∖ 𝑆𝑗(𝑞𝑚, 𝑡𝑚) ∋ 𝛾𝑚.

Thus, as 𝛾𝑚 < 𝛿0, we have that 𝛾𝑚 belongs to the left-hand-side set.
Since 𝑚 above was arbitrary we get 𝛾 ∈ 𝑆𝑗+1(𝑞𝑛0 , 𝑡𝑛0) ⊆ 𝑑𝑖𝑎. This yields

a contradiction with our original assumption that 𝛾 /∈ 𝑑𝑖𝑎.

51For this we use Definition 6.3(2).
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So, 𝛾 = sup𝑛<𝜔 𝛿𝑛. Now, let 𝑛⋆ < 𝜔 such that ℓ(𝑝𝑛⋆) ≥ ℓ(𝑝) + 𝑚(𝑆𝑖+1).
Then, for all 𝑛 ≥ 𝑛⋆, Clause (4) of Definition 6.3 yields (𝛿𝑛, 𝑞𝑛⋆) ∈ 𝑅. In

particular, (𝛾, 𝑞𝑛*) ∈ 𝑅 and thus 𝑞𝑛* P 𝛾 /∈ �̇�+ (see page 38). Finally, since

𝑞𝑛* ∈ �̄�, we conclude that 𝛾 /∈ (�̇�+)𝐺, as desired.

I Assume cf(𝛾) ≥ 𝜔1. Working in 𝑉 [�̄�], we have 𝛾 = sup𝛼<cf(𝛾) 𝛾𝛼,

where for each 𝛼 < cf(𝛾), there is 𝑡𝛼 ∈ 𝐻𝑛 with 𝑡𝛼 ⪯𝑛 𝜛𝑛(𝑞) such that
𝛾𝛼 ∈ 𝑆𝑗+1(𝑞, 𝑡𝛼) ∖ 𝑆𝑗(𝑞, 𝑡𝛼). Here, 𝑞 ∈ �̄� ∩𝑊 (𝑝) and 𝑛 ∈ [ℓ(𝑝), ℓ(𝑞)].52 By
strengthening 𝑞 if necessary, we may also assume that 𝑞 ∈𝑊≥𝑚(𝑆𝑗+1)(𝑝).

53

For each 𝛼 < cf(𝛾), set 𝛿𝛼 := max(𝑆𝑗+1(𝑞, 𝑡𝛼)). Clearly, 𝛾 ≤ sup𝛼<cf(𝛾) 𝛿𝛼.

We claim that 𝛾 = sup𝛼<cf(𝛾) 𝛿𝛼. Otherwise, suppose 𝛼* < cf(𝛾) is such

that 𝛾𝛽 < 𝛿𝛼* , for all 𝛽 < cf(𝛾). Fix 𝛽 ≥ 𝛼* and let 𝑡 ∈ 𝐻𝑛 be such
that 𝑡 ⪯𝑛 𝑡𝛽, 𝑡𝛼* . Then, 𝑞 + 𝑡 ≤ 𝑞 + 𝑡𝛽, so Definition 6.3(2) for 𝑆𝑗+1 yields
𝛾𝛽 ∈ 𝑆𝑗+1(𝑞, 𝑡𝛽) ⊆ 𝑆𝑗+1(𝑞, 𝑡). Hence, we have that 𝛾𝛽 ∈ 𝑆𝑗+1(𝑞, 𝑡) ∖ 𝑆𝑗(𝑞, 𝑡).
Also, arguing as in the previous case we have 𝛿𝛼* ∈ 𝑆𝑗+1(𝑞, 𝑡𝛼*) ∖ 𝑆𝑗(𝑞, 𝑡𝛼*).
Finally, combining Clause (4) of Definition 6.5 with 𝛾𝛽 < 𝛿𝛼* we conclude
that 𝛾𝛽 ∈ 𝑆𝑗+1(𝑞, 𝑡𝛼). Since 𝑆𝑗+1(𝑞, 𝑡𝛼) is a closed set, we get 𝛾 ∈ 𝑆𝑗+1(𝑞, 𝑡𝛼),
which contradicts our assumption that 𝛾 /∈ 𝑑𝑖𝑎.

So, 𝛾 = sup𝛼<cf(𝛾) 𝛿𝛼. Mimicking the argument of the former case it is

enough to apply Clause (4) of Definition (6.3) to infer that 𝑞 P 𝛾 /∈ �̇�+,

which yields 𝛾 /∈ (�̇�+)𝐺.

Limit case: Suppose that 𝑖 is limit. If cf(𝑖) ̸= cf(𝛾), then 𝛾 ∈ cl(𝑑𝑗𝑎) for
some 𝑗 < 𝑖, and we are done. Thus, suppose cf(𝑖) = cf(𝛾). For simplicity
assume 𝑖 = cf(𝑖), as the general argument is analogous. We have two cases.
I Assume cf(𝛾) = 𝜔. Working in 𝑉 [�̄�], we have 𝛾 = sup𝑛<𝜔 𝛾𝑛, where

for each 𝑛 < 𝜔, there is (𝑞𝑛, 𝑡𝑛), such that 𝑞𝑛 ∈ �̄� ∩𝑊 (𝑝), 𝑡𝑛 ⪯𝑘 𝜛𝑘(𝑞𝑛)
with 𝑡𝑛 ∈ 𝐻𝑘 for some 𝑘 ∈ [ℓ(𝑝), ℓ(𝑞𝑛)], and 𝛾𝑛 ∈ 𝑆𝜔(𝑞𝑛, 𝑡𝑛). Strengthening
if necessary, we may further assume 𝑞𝑛 + 𝑡𝑛 ≤ 𝑞𝑚 + 𝑡𝑚 for 𝑚 ≤ 𝑛.

For each 𝑛 < 𝜔 set 𝛿𝑛 := max(𝑆𝜔(𝑞𝑛, 𝑡𝑛)). Clearly, 𝛾 ≤ sup𝑛<𝜔 𝛿𝑛.
As in the previous cases, we claim that 𝛾 = sup𝑛<𝜔 𝛿𝑛: Suppose otherwise

and let 𝑛0 < 𝜔 such that 𝛾𝑚 < 𝛿𝑛0 for all 𝑚 < 𝜔. Actually 𝛾 < 𝛿𝑛0 , as
otherwise 𝛾 ∈ 𝑆𝜔(𝑞𝑛0 , 𝑡𝑛0) ⊆ 𝑑𝜔𝑎 , which would yield a contradiction.

By Clause (5) of Definition 6.5, 𝛿𝑛0 = sup𝑘<𝜔 max(𝑆𝑘(𝑞𝑛0 , 𝑡𝑛0), hence
there is some 𝑘0 < 𝜔 such that 𝛾 < max(𝑆𝑘0(𝑞𝑛0 , 𝑡𝑛0)).

Fix 𝑚 ≥ 𝑛0. Since 𝑞𝑚 + 𝑡𝑚 ≤ 𝑞𝑛0 + 𝑡𝑛0 , Clause (2) of Definition 6.3 yields

𝛾 < max(𝑆𝑘0(𝑞𝑛0 , 𝑡𝑛0)) ≤ max(𝑆𝑘0(𝑞𝑚, 𝑡𝑚)).

Also, Clause (3) of Definition 6.5 implies that

𝑆𝑘0(𝑞𝑚, 𝑡𝑚) ⊑ 𝑆𝜔(𝑞𝑚, 𝑡𝑚) ∋ 𝛾𝑚,

so that, 𝛾𝑚 ∈ 𝑆𝑘0(𝑞𝑚, 𝑡𝑚). Since 𝑚 was arbitrary, we infer that 𝛾 ∈ cl(𝑑𝑘0𝑎 ),
which yields a contradiction with our original assumption.

So, 𝛾 = sup𝑛<𝜔 𝛿𝑛. Arguing as in previous cases conclude that 𝛾 /∈ (�̇�+)𝐺.

52Note that this is the case because 𝑊 (𝑝) is a tree with height 𝜔 and cf(𝛾) ≥ 𝜔1.
53Note that increasing 𝑞 would only increase 𝑆𝑗+1(𝑞, 𝑡𝛼).
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I Assume cf(𝛾) ≥ 𝜔1. Working in 𝑉 [�̄�], we have 𝛾 = sup𝛼<𝑖 𝛾𝛼, where
for each 𝛼 < 𝑖, there is 𝑡𝛼 ∈ 𝐻𝑛 with 𝑡𝛼 ⪯𝑛 𝜛𝑛(𝑞) such that 𝛾𝛼 ∈ 𝑆𝑖(𝑞, 𝑡𝛼).
As in previous cases, here both 𝑞 and 𝑛 are fixed and 𝑞 ∈𝑊≥𝑚(𝑆𝑖)(𝑝).

For each 𝛼 < 𝑖, set 𝛿𝛼 := max(𝑆𝑖(𝑞, 𝑡𝛼)). Once again, we aim to show
that 𝛾 = sup𝛼<𝑖 𝛿𝛼. Suppose that this is not the case, and let 𝛼* < 𝑖 such
that 𝛾𝛼 < 𝛿𝛼* for all 𝛼 < 𝑖. As before, 𝛾 ̸= 𝛿𝛼* , so there is some �̄� < 𝑖
such that 𝛾 < max(𝑆�̄�(𝑞, 𝑡𝛼*)) Now, let 𝛼 < 𝑖 be arbitrary and find 𝑠𝛼 ⪯𝑛

𝑡𝛼* , 𝑡𝛼 in 𝐻𝑛. Then, 𝛾𝛼 ∈ 𝑆𝑖(𝑞, 𝑡𝛼) ⊆ 𝑆𝑖(𝑞, 𝑠𝛼). Also, 𝑆�̄�(𝑞, 𝑡𝛼*) ⊆ 𝑆�̄�(𝑞, 𝑠𝛼)
and so max(𝑆�̄�(𝑞, 𝑠𝛼)) > 𝛾. By Clause (3) of Definition 6.5 we have that
𝑆�̄�(𝑞, 𝑠𝛼) ⊑ 𝑆𝑖(𝑞, 𝑠𝛼), hence 𝛾𝛼 ∈ 𝑆�̄�(𝑞, 𝑠𝛼).

The above shows that 𝛾 ∈ cl(𝑑�̄�𝑎 ), which is a contradiction.
So, 𝛾 = sup𝛼<𝑖 𝛿𝛼. Now proceed as in previous cases, invoking Clause (4)

of Definition 6.3, and infer that 𝛾 /∈ (�̇�+)𝐺. �

Claim 6.17.2. Suppose 𝑎 = (𝑝, �⃗�) ∈ 𝐴, where 𝑝 ≤ 𝑟⋆. For every 𝛾 < 𝜇,

there exists 𝛾 ∈ (𝛾, 𝜇) and (𝑝, 𝑇 )E (𝑝, �⃗�), such that max(dom(𝑇 )) = 𝛼 and
for all (𝑞, 𝑡) ∈ dom(𝑇𝛼), max(𝑇𝛼(𝑞, 𝑡)) = 𝛼.

Proof. This is indeed what the argument of Lemma 6.14 shows. �

Working in 𝑉 [𝐺], the above claim yields an unbounded set 𝐼 ⊆ 𝜇 such

that for each 𝛾 ∈ 𝐼 there is 𝑎𝛾 = (𝑝𝛾 , �⃗�
𝛾) ∈ 𝐺 with max(dom(�⃗�𝛾)) = 𝛾 and

max(𝑆𝛾𝛾 (𝑞, 𝑡)) = 𝛾 for all (𝑞, 𝑡) ∈ dom(𝑆𝛾𝛾 ). For each 𝛾 ∈ 𝐼, set 𝐷𝛾 := cl(𝑑𝑎𝛾 ).

Claim 6.17.3. For each 𝛾 < 𝛾′ both in 𝐼 ′, 𝐷𝛾 ⊑ 𝐷𝛾′.

Proof. Let 𝛾 < 𝛾′ be in 𝐼 ′. It is enough to show that 𝑑𝑎𝛾 ⊑ 𝑑𝑎𝛾′ . Namely, we

will show that 𝑑𝑎𝛾 = 𝑑𝑎𝛾′ ∩𝛾+1. Let 𝑏 = (𝑟, �⃗�) ∈ 𝐺 be such that 𝑏E𝑎𝛾 , 𝑎𝛾′ .
For the first direction, suppose that 𝛿 ∈ 𝑑𝑎𝛾 and let (𝑞, 𝑡) ∈ dom(𝑆𝛾𝛾 ) be a

pair witnessing this. By strengthening 𝑞 and 𝑡 if necessary, we may further
assume that ℓ(𝑞) ≥ ℓ(𝑟) and 𝑡 ∈ 𝐻𝑛, 𝑡 ⪯𝑛 𝜛𝑛(𝑞), where 𝑛 := ℓ(𝑞).54

Let 𝑟′ ∈ 𝑊 (𝑟) ∩ �̄� be the unique condition with ℓ(𝑟′) = 𝑛. Also, let
𝑡′ ∈ 𝐻𝑛 be such that 𝑡′ ⪯𝑛 𝜛𝑛(𝑟′), 𝑡. Then 𝑤(𝑝𝛾 , 𝑟

′) = 𝑞, 𝑡′ = 𝜛𝑛(𝑟′ + 𝑡′)
and 𝑞 + 𝑡′ ≤ 𝑞 + 𝑡. So, by 𝑏E 𝑎𝛾 and 𝑏E 𝑎𝛾′ , we get:

𝛿 ∈ 𝑆𝛾𝛾 (𝑞, 𝑡) ⊆ 𝑆𝛾𝛾 (𝑞, 𝑡′) = 𝑅𝛾(𝑟′, 𝑡′) = 𝑆𝛾
′
𝛾 (𝑤(𝑝𝛾 , 𝑟

′), 𝑡′) ⊆ 𝑑𝑎𝛾′ .

For the other direction, suppose that 𝛿 ∈ 𝑑𝑎𝛾′ ∩ (𝛾 + 1) and let (𝑞, 𝑡) be a

pair in dom(𝑆𝛾
′

𝛾′ ) witnessing this. Again, by strengthening 𝑞, we may assume

that ℓ(𝑞) ≥ ℓ(𝑟) and 𝑡 ∈ 𝐻𝑛, 𝑡 ⪯𝑛 𝜛𝑛(𝑞𝑛), where 𝑛 := ℓ(𝑞). Similarly as
above, let 𝑟′ ∈ 𝑊 (𝑟) ∩ �̄� be with ℓ(𝑟′) = 𝑛, and 𝑡′ ∈ 𝐻𝑛 be such that
𝑡′ ⪯𝑛 𝜛𝑛(𝑟′), 𝑡. Then 𝑤(𝑝𝛾′ , 𝑟

′) = 𝑞, 𝑡′ = 𝜛𝑛(𝑟′ + 𝑡′), 𝑞 + 𝑡′ ≤ 𝑞 + 𝑡 and:

(1) 𝑅𝛾′(𝑟
′, 𝑡′) = 𝑆𝛾

′

𝛾′ (𝑞, 𝑡
′), since 𝑏E 𝑎𝛾′ ;

54Suppose that (𝑞, 𝑡) is the pair we are originally given and that 𝑞′ ∈𝑊𝑛(𝑝)∩ �̄�, where
𝑛 ≥ ℓ(𝑟). Setting 𝑡′ := 𝜛𝑛(𝑞

′ + 𝑡) it is immediate that 𝑞′ + 𝑡′ ≤ 𝑞+ 𝑡, hence 𝛿 ∈ 𝑆𝛾
𝛾 (𝑞

′, 𝑡′).

Also, it is not hard to check that 𝑞′ + 𝑡 ∈ 𝐺, hence 𝑡′ ⪯𝑛 𝜛𝑛(𝑞
′) and 𝑡′ ∈ 𝐻𝑛.
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(2) 𝑅𝛾(𝑟′, 𝑡′) = 𝑆𝛾𝛾 (𝑤(𝑝𝛾 , 𝑟
′), 𝑡′), and so 𝛾 = max(𝑅𝛾(𝑟′, 𝑡′));

(3) 𝑅𝛾(𝑟′, 𝑡′) ⊑ 𝑅𝛾′(𝑟
′, 𝑡′), by Clause (3) of Definition 6.5 for �⃗�.

Combining all three, we get that

𝛿 ∈ 𝑆𝛾
′

𝛾′ (𝑞, 𝑡) ∩ (𝛾 + 1) ⊆ 𝑆𝛾
′

𝛾′ (𝑞, 𝑡
′) ∩ (𝛾 + 1) =

𝑅𝛾′(𝑟
′, 𝑡′) ∩ (𝛾 + 1) = 𝑅𝛾(𝑟′, 𝑡′) = 𝑆𝛾𝛾 (𝑤(𝑝𝛾 , 𝑟

′), 𝑡′) ⊆ 𝑑𝑎𝛾 ,

as desired. �

Let 𝐷 :=
⋃︀
𝛾∈𝐼 𝐷𝛾 . By Claims 6.17.1 and 6.17.3, 𝐷 is disjoint from (𝑇+)𝐺.

Additionally, Claim 6.17.3 implies that 𝐷 is closed and, since 𝐼 ′ ⊆ 𝐷, it is
also unbounded. So, (�̇�+)𝐺 is nonstationary in 𝑉 [𝐺]. �

Remark 6.18. Note that Lemma 6.17 together with 𝑟⋆ P �̇� ⊆ �̇�+ (see page 38)

imply that ⌈𝑟⋆⌉A A “�̇� is nonstationary”.

The next corollary sums up the content of Subsection 6.1:

Corollary 6.19. Suppose that (Σ, S⃗)-Prikry quadruple (P, ℓ, 𝑐, �⃗�) such that,
P = (𝑃,≤) is a subset of 𝐻𝜇+, (P, ℓ) has property 𝒟, �⃗� is a coherent sequence

of nice projections, 1lP P �̌� = �̌�+ and 1lP P “𝜅 is singular”.
For every 𝑟⋆ ∈ 𝑃 and a P-name 𝑧 for an 𝑟⋆-fragile stationary subset of

𝜇, there are a (Σ, S⃗)-Prikry quadruple (A, ℓA, 𝑐A, �⃗�) having property 𝒟, and
a pair of maps (t, 𝜋) such that all the following hold:

(a) (t, 𝜋) is a super nice forking projection from (A, ℓA, 𝑐A, �⃗�) to (P, ℓ, 𝑐, �⃗�)
that has the weak mixing property;

(b) �⃗� is a coherent sequence of nice projections;
(c) 1lA A �̌� = �̌�+;
(d) A = (𝐴,E) is a subset of 𝐻𝜇+;

(e) For every 𝑛 < 𝜔, Å𝜋𝑛 is a 𝜇-directed-closed;

(f) ⌈𝑟⋆⌉A forces that 𝑧 is nonstationary.

Proof. Since all the assumptions of Setup 6 are valid we obtain from Defi-
nitions 6.6 and 6.7, a notion of forcing A = (𝐴,E) together with maps ℓA
and 𝑐A, and a sequence �⃗� such that, by Corollary 6.16, (A, ℓA, 𝑐A, �⃗�) is a

(Σ, S⃗)-Prikry quadruple having property 𝒟 and Clauses (a)–(c) above hold.
Clause (d) easily follows from the definition of A = (𝐴,E) (see, e.g. [PRS19,
Lemma 6.6]), Clause (e) is Fact 6.13 and Clause (f) is Lemma 6.17 together
with Remark 6.18. �

6.2. Fragile sets vs non-reflecting stationary sets. For every 𝑛 < 𝜔,
denote Γ𝑛 := {𝛼 < 𝜇 | cf𝑉 (𝛼) < 𝜎𝑛−2}, where, by convention, we define 𝜎−2

and 𝜎−1 to be ℵ0.
The next lemma is an analogue of [PRS19, Lemma 6.1] and will be crucial

for the proof of reflection in the model of the Main Theorem.

Lemma 6.20. Suppose that:

(i) for every 𝑛 < 𝜔, 𝑉 P𝑛 |= Refl(𝐸𝜇<𝜎𝑛−2
, 𝐸𝜇<𝜎𝑛);
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(ii) 𝑟⋆ is a condition in P;
(iii) �̇� is a nice P-name for a subset of Γℓ(𝑟⋆);

(iv) 𝑟⋆ P-forces that �̇� is a non-reflecting stationary set.

Then �̇� is 𝑟⋆-fragile.

Proof. Suppose that �̇� is not 𝑟⋆-fragile (see Definition 6.1), and let 𝑞 be an
extension of 𝑟⋆ witnessing that. Set 𝑛 := ℓ(𝑞), so that

𝑞 P𝑛 “�̇�𝑛 is stationary”.

Since �̇� is a nice P-name for a subset of Γℓ(𝑟⋆), it altogether follows that 𝑞

P𝑛-forces that �̇�𝑛 is a stationary subset of 𝐸𝜇<𝜎𝑛−2
.

Let 𝐺𝑛 be P𝑛-generic containing 𝑞. By Clause (𝑖), we have that 𝑇𝑛 :=

(�̇�𝑛)𝐺𝑛 reflects at some ordinal 𝛾 of cofinality < 𝜎𝑛. Since 𝜛𝑛 is a nice
projection, we have that P𝜛𝑛

𝑛 × S𝑛 projects to P𝑛.55 Then by |𝑆𝑛| < 𝜎𝑛 and
the fact that P𝜛𝑛

𝑛 contains a 𝜎𝑛-directed-closed dense subset, it follows that
𝜃 := cf𝑉 (𝛾) is < 𝜎𝑛. In 𝑉 , fix a club 𝐶 ⊆ 𝛾 of order-type 𝜃.

Work in 𝑉 [𝐺𝑛]. Set 𝐴 := 𝑇𝑛 ∩ 𝐶, and note that 𝐴 is a stationary subset
of 𝛾 of size ≤ 𝜃. Let 𝐻𝑛 be the S𝑛-generic filter induced from 𝐺𝑛 by 𝜛𝑛.

Again, since P𝜛𝑛
𝑛 contains a 𝜎𝑛-directed-closed dense subset, it cannot

have added 𝐴. So, 𝐴 ∈ 𝑉 [𝐻𝑛]. Let ⟨𝛼𝑖 | 𝑖 < 𝜃⟩ be some enumeration
(possibly with repetitions) of 𝐴, and let ⟨�̇�𝑖 | 𝑖 < 𝜃⟩ be a sequence of S𝑛-

name for it. Pick a condition 𝑟 in P𝑛/𝐻𝑛 such that 𝑟 P𝑛 �̇� ⊆ �̇�𝑛 ∩ 𝛾 and

such that 𝜛𝑛(𝑟) S𝑛 �̇� = {�̇�𝑖 | 𝑖 < 𝜃}. Denote 𝑠 := 𝜛𝑛(𝑟) and note that
𝑠 ∈ 𝐻𝑛. We now go back and work in 𝑉 .

Claim 6.20.1. Let 𝑖 < 𝜃 and 𝛼 < 𝛾. For all 𝑟′ ≤𝜛𝑛 𝑟 and 𝑠′ ⪯𝑛 𝑠, if 𝑠
′ S𝑛

�̇�𝑖 = �̌�, then there are 𝑟′′ ≤𝜛𝑛 𝑟′ and 𝑠′′ ⪯𝑛 𝑠
′ such that 𝑟′′ + 𝑠′′ P �̌� ∈ �̇� .

Proof. Suppose 𝑟′, 𝑠′ are as above. As 𝑟′ extends 𝑟 and 𝑠′ extends 𝑠, it follows
that 𝑟′ + 𝑠′ P𝑛 �̌� ∈ �̇�𝑛 and 𝑠′ S𝑛 �̌� ∈ �̇�. So, by the definition of the name

�̇�𝑛, there is some 𝑝 ≤0 𝑟′ + 𝑠′ such that 𝑝 P �̌� ∈ �̇�𝑛. By Definition 2.2(4),

let 𝑠′′ ⪯𝑛 𝑠
′ and 𝑟′′ ≤𝜛𝑛 𝑟′ be such that 𝑟′′ + 𝑠′′ = 𝑝. So 𝑟′′ + 𝑠′′ P �̌� ∈ �̇� ,

as desired. �

Fix an injective enumeration ⟨(𝑖𝜉, 𝑠𝜉) | 𝜉 < 𝜒⟩ of 𝜃 × (S𝑛 ↓ 𝑠). Note that

𝜒 < 𝜎𝑛. Using that P𝜛𝑛
𝑛 is 𝜎𝑛-strategically-closed,56 build a ≤𝜛𝑛-decreasing

sequence of conditions ⟨𝑟𝜉 | 𝜉 ≤ 𝜒⟩, such that, for every 𝜉 < 𝜒, 𝑟𝜉 ≤�⃗� 𝑟,

and, for any 𝛼 < 𝛾, if 𝑠𝜉 S𝑛 �̇�𝑖𝜉 = �̌�, then there is 𝑠𝜉 ⪯𝑛 𝑠𝜉 such that

𝑟𝜉 + 𝑠𝜉 P �̌� ∈ �̇� . Finally, let 𝑟* := 𝑟𝜒. Note that 𝜛𝑛(𝑟*) = 𝜛𝑛(𝑟) = 𝑠, and
hence 𝜛𝑛(𝑟*) ∈ 𝐻𝑛.

Claim 6.20.2. 𝑟* P/𝐻𝑛
𝐴 ⊆ �̇� ∩ 𝛾.

55More precisely, (P𝜛𝑛
𝑛 ↓ 𝑞)× (S𝑛 ↓ 𝜛𝑛(𝑞)) projects onto P𝑛 ↓ 𝑞.

56This is a consequence of Clause (2) of Definition 3.3.
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Proof. For each 𝑖 < 𝜃, by density, there is some 𝑠′ ⪯𝑛 𝑠 in 𝐻𝑛 such that 𝑠′

decides �̇�𝑖 to be some ordinal 𝛼 < 𝛾. Fix 𝜉 < 𝜒 such that (𝑖𝜉, 𝑠𝜉) = (𝑖, 𝑠′).

By the construction, 𝑟𝜉 + 𝑠𝜉 P �̌� ∈ �̇� , hence 𝑟* + 𝑠𝜉 P �̌� ∈ �̇� ∩ 𝛾. �

Finally, since (P, ℓ, 𝑐, �⃗�) is (Σ, S⃗)-Prikry, Lemma 3.14(1) implies that
P/𝐻𝑛 does not add any new subsets of 𝜃 and so no new subsets of 𝐶, hence
P/𝐻𝑛 preserves the stationarity of 𝐴, hence the stationarity of 𝑇 ∩ 𝛾. This
contradicts hypothesis (𝑖𝑣). �

7. Iteration scheme

In this section, we define an iteration scheme for (Σ, S⃗)-Prikry forcings,
following closely and expanding the work from [PRS20, S3].

Setup 7. The blanket assumptions for this section are as follows:

∙ 𝜇 is some cardinal satisfying 𝜇<𝜇 = 𝜇, so that |𝐻𝜇| = 𝜇;
∙ ⟨(𝜎𝑛, 𝜎*𝑛) | 𝑛 < 𝜔⟩ is a sequence of pairs of regular uncountable

cardinals, such that, for every 𝑛 < 𝜔, 𝜎𝑛 ≤ 𝜎*𝑛 ≤ 𝜇 and 𝜎𝑛 ≤ 𝜎𝑛+1;

∙ S⃗ = ⟨S𝑛 | 𝑛 < 𝜔⟩ is a sequence of notions of forcing, S𝑛 = (𝑆𝑛,⪯𝑛),
with |𝑆𝑛| < 𝜎𝑛;

∙ Σ := ⟨𝜎𝑛 | 𝑛 < 𝜔⟩ and 𝜅 := sup𝑛<𝜔 𝜎𝑛.

The following convention will be applied hereafter:

Convention 7.1. For a pair of ordinals 𝛾 ≤ 𝛼 ≤ 𝜇+:

(1) ∅𝛼 := 𝛼× {∅} denotes the 𝛼-sequence with constant value ∅;
(2) For a 𝛾-sequence 𝑝 and an 𝛼-sequence 𝑞, 𝑝 * 𝑞 denotes the unique

𝛼-sequence satisfying that for all 𝛽 < 𝛼:

(𝑝 * 𝑞)(𝛽) =

{︃
𝑞(𝛽), if 𝛾 ≤ 𝛽 < 𝛼;

𝑝(𝛽), otherwise.

(3) Let P𝛼 := (𝑃𝛼,≤𝛼) and P𝛾 := (𝑃𝛾 ,≤𝛾) be forcing posets such that
𝑃𝛼 ⊆ 𝛼𝐻𝜇+ and 𝑃𝛾 ⊆ 𝛾𝐻𝜇+ . Also, assume 𝑝 ↦→ 𝑝 � 𝛾 defines a

projection between P𝛼 and P𝛾 . We denote by 𝑖𝛼𝛾 : 𝑉 P𝛾 → 𝑉 P𝛼 the
map defined by recursion over the rank of each P𝛾-name 𝜎 as follows:

𝑖𝛼𝛾 (𝜎) := {(𝑖𝛼𝛾 (𝜏), 𝑝 * ∅𝛼) | (𝜏, 𝑝) ∈ 𝜎}.

Our iteration scheme requires three building blocks:

Building Block I. We are given a (Σ, S⃗)-Prikry forcing (Q, ℓ, 𝑐, �⃗�) such
that (Q, ℓ) satisfies property 𝒟. We moreover assume that Q = (𝑄,≤𝑄)
is a subset of 𝐻𝜇+ , 1lQ Q “�̌� = �̌�+ &𝜅 is singular” and �⃗� is a coherent
sequence. To streamline the matter, we also require that 1lQ be equal to ∅.

Building Block II. Suppose that (P, ℓP, 𝑐P, �⃗�) is a (Σ, S⃗)-Prikry quadruple
having property 𝒟 such that P = (𝑃,≤) is a subset of 𝐻𝜇+ , �⃗� is a coherent

sequence of nice projections, 1lP P “�̌� = �̌�+” and 1lP P “�̌� is singular”.
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For every 𝑟⋆ ∈ 𝑃 , and a P-name 𝑧 ∈ 𝐻𝜇+ , we are given a corresponding

(Σ, S⃗)-Prikry quadruple (A, ℓA, 𝑐A, �⃗�) having property 𝒟 such that:

(a) there is a super nice forking projection (t, 𝜋) from (A, ℓA, 𝑐A, �⃗�) to
(P, ℓP, 𝑐P, �⃗�) that has the weak mixing property;

(b) �⃗� is a coherent sequence of nice projections;

(c) for every 𝑛 < 𝜔, Å𝜋𝑛 is 𝜎*𝑛-directed-closed;57

(d) 1lA A �̌� = �̌�+;
(e) A = (𝐴,E) is a subset of 𝐻𝜇+ ;

By [PRS20, Lemma 2.18], we may also require that:

(f) each element of 𝐴 is a pair (𝑥, 𝑦) with 𝜋(𝑥, 𝑦) = 𝑥;

(g) for every 𝑎 ∈ 𝐴, ⌈𝜋(𝑎)⌉A = (𝜋(𝑎), ∅);

(h) for every 𝑝, 𝑞 ∈ 𝑃 , if 𝑐P(𝑝) = 𝑐P(𝑞), then 𝑐A(⌈𝑝⌉A) = 𝑐A(⌈𝑞⌉A).

Building Block III. We are given a function 𝜓 : 𝜇+ → 𝐻𝜇+ .

Goal 7.2. Our goal is to define a system ⟨(P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼, ⟨t𝛼,𝛾 | 𝛾 ≤ 𝛼⟩) |
𝛼 ≤ 𝜇+⟩ in such a way that for all 𝛾 ≤ 𝛼 ≤ 𝜇+:

(i) P𝛼 is a poset (𝑃𝛼,≤𝛼), 𝑃𝛼 ⊆ 𝛼𝐻𝜇+ , and, for all 𝑝 ∈ 𝑃𝛼, |𝐵𝑝| < 𝜇,
where 𝐵𝑝 := {𝛽 + 1 | 𝛽 ∈ dom(𝑝) & 𝑝(𝛽) ̸= ∅};

(ii) The map 𝜋𝛼,𝛾 : 𝑃𝛼 → 𝑃𝛾 defined by 𝜋𝛼,𝛾(𝑝) := 𝑝 � 𝛾 forms an
projection from P𝛼 to P𝛾 and ℓ𝛼 = ℓ𝛾 ∘ 𝜋𝛼,𝛾 ;

(iii) P0 is a trivial forcing, P1 is isomorphic toQ given by Building Block I,
and P𝛼+1 is isomorphic to A given by Building Block II when invoked
with respect to (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) and a pair (𝑟⋆, 𝑧) which is decoded
from 𝜓(𝛼);

(iv) If 𝛼 > 0, then (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) is a (Σ, S⃗)-Prikry notion of forcing
satisfying property 𝒟, whose greatest element is ∅𝛼, ℓ𝛼 = ℓ1 ∘ 𝜋𝛼,1
and ∅𝛼 P𝛼 �̌� = �̌�+. Moreover, �⃗�𝛼 is a coherent sequence of nice
projections such that �⃗�𝛼 = �⃗�𝛾 ∙ 𝜋𝛼,𝛾 for every 𝛾 ≤ 𝛼;

(v) If 0 < 𝛾 < 𝛼 ≤ 𝜇+, then (t𝛼,𝛾 , 𝜋𝛼,𝛾) is a nice forking projection from
(P𝛼, ℓ𝛼, �⃗�𝛼) to (P𝛾 , ℓ𝛾 , �⃗�𝛾); in case 𝛼 < 𝜇+, (t𝛼,𝛾 , 𝜋𝛼,𝛾) is further-
more a nice forking projection from (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) to (P𝛾 , ℓ𝛾 , 𝑐𝛾 , �⃗�𝛾),
and in case 𝛼 = 𝛾 + 1, (t𝛼,𝛾 , 𝜋𝛼,𝛾) is super nice and has the weak
mixing property;

(vi) If 0 < 𝛾 ≤ 𝛽 ≤ 𝛼, then, for all 𝑝 ∈ 𝑃𝛼 and 𝑟 ≤𝛾 𝑝�𝛾, t𝛽,𝛾(𝑝�𝛽)(𝑟) =
(t𝛼,𝛾(𝑝)(𝑟)) � 𝛽.

7.1. Defining the iteration. For every 𝛼 < 𝜇+, fix an injection 𝜑𝛼 : 𝛼→
𝜇. As |𝐻𝜇| = 𝜇, by the Engelking-Kar lowicz theorem, we may also fix
a sequence ⟨𝑒𝑖 | 𝑖 < 𝜇⟩ of functions from 𝜇+ to 𝐻𝜇 such that for every
function 𝑒 : 𝐶 → 𝐻𝜇 with 𝐶 ∈ [𝜇+]<𝜇, there is 𝑖 < 𝜇 such that 𝑒 ⊆ 𝑒𝑖.

The upcoming definition is by recursion on 𝛼 ≤ 𝜇+, and we continue as
long as we are successful.

57𝐴𝑛 is the poset given in Definition 5.7(7) defined with respect to the type map
witnessing Clause (a) above.
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I Let P0 := ({∅},≤0) be the trivial forcing. Let ℓ0 and 𝑐0 be the constant
function {(∅, ∅)} and �⃗�0 = ⟨{(∅, 1lS𝑛)} | 𝑛 < 𝜔⟩. Finally, let t0,0 be the
constant function {(∅, {(∅, ∅)})}, so that t0,0(∅) is the identity map.
I Let P1 := (𝑃1,≤1), where 𝑃1 := 1𝑄 and 𝑝 ≤1 𝑝

′ iff 𝑝(0) ≤𝑄 𝑝′(0).

Evidently, 𝑝
𝜄↦→ 𝑝(0) form an isomorphism between P1 and Q, so we naturally

define ℓ1 := ℓ ∘ 𝜄, 𝑐1 := 𝑐 ∘ 𝜄 and �⃗�1 := �⃗� ∙ 𝜄. Hereafter, the sequence �⃗�1

is denoted by ⟨𝜛1
𝑛 | 𝑛 < 𝜔⟩. For all 𝑝 ∈ 𝑃1, let t1,0(𝑝) : {∅} → {𝑝} be the

constant function, and let t1,1(𝑝) be the identity map.
I Suppose 𝛼 < 𝜇+ and that ⟨(P𝛽, ℓ𝛽, 𝑐𝛽, �⃗�𝛽, ⟨t𝛽,𝛾 | 𝛾 ≤ 𝛽⟩) | 𝛽 ≤ 𝛼⟩ has

already been defined. We now define (P𝛼+1, ℓ𝛼+1, 𝑐𝛼+1, �⃗�𝛼+1) and ⟨t𝛼+1,𝛾 |
𝛾 ≤ 𝛼+ 1⟩.
II If 𝜓(𝛼) happens to be a triple (𝛽, 𝑟, 𝜎), where 𝛽 < 𝛼, 𝑟 ∈ 𝑃𝛽 and

𝜎 is a P𝛽-name, then we appeal to Building Block II with (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼),

𝑟⋆ := 𝑟 * ∅𝛼 and 𝑧 := 𝑖𝛼𝛽(𝜎) to get a corresponding (Σ, S⃗)-Prikry quadruple

(A, ℓA, 𝑐A, �⃗�).
II Otherwise, we obtain (A, ℓA, 𝑐A, �⃗�) by appealing to Building Block II

with (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼), 𝑟⋆ := ∅𝛼 and 𝑧 := ∅.
In both cases, we obtain a nice forking projection (t, 𝜋) from (A, ℓA, 𝑐A, �⃗�)

to (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼). Furthermore, each condition in A = (𝐴,E) is a pair

(𝑥, 𝑦) with 𝜋(𝑥, 𝑦) = 𝑥, and, for every 𝑝 ∈ 𝑃𝛼, ⌈𝑝⌉A = (𝑝, ∅). Now, define
P𝛼+1 := (𝑃𝛼+1,≤𝛼+1) by letting 𝑃𝛼+1 := {𝑥a⟨𝑦⟩ | (𝑥, 𝑦) ∈ 𝐴}, and then
letting 𝑝 ≤𝛼+1 𝑝

′ iff (𝑝 �𝛼, 𝑝(𝛼))E (𝑝′ �𝛼, 𝑝′(𝛼)). Put ℓ𝛼+1 := ℓ1 ∘𝜋𝛼+1,1 and
define 𝑐𝛼+1 : 𝑃𝛼+1 → 𝐻𝜇 via 𝑐𝛼+1(𝑝) := 𝑐A(𝑝 � 𝛼, 𝑝(𝛼)).

Let �⃗�𝛼 = ⟨𝜛𝛼
𝑛 | 𝑛 < 𝜔⟩ be defined in the natural way, i.e., for each 𝑛 < 𝜔

and 𝑥a⟨𝑦⟩ ∈ (𝑃𝛼)≥𝑛, we set 𝜛𝛼
𝑛(𝑥a⟨𝑦⟩) := 𝜍𝑛(𝑥, 𝑦).

Next, let 𝑝 ∈ 𝑃𝛼+1, 𝛾 ≤ 𝛼 + 1 and 𝑟 ≤𝛾 𝑝 � 𝛾 be arbitrary; we need to
define t𝛼+1,𝛾(𝑝)(𝑟). For 𝛾 = 𝛼+ 1, let t𝛼+1,𝛾(𝑝)(𝑟) := 𝑟, and for 𝛾 ≤ 𝛼, let

t𝛼+1,𝛾(𝑝)(𝑟) := 𝑥a⟨𝑦⟩ iff t(𝑝 � 𝛼, 𝑝(𝛼))(t𝛼,𝛾(𝑝 � 𝛼)(𝑟)) = (𝑥, 𝑦).

I Suppose 𝛼 ≤ 𝜇+ is a nonzero limit ordinal, and that the sequence
⟨(P𝛽, ℓ𝛽, 𝑐𝛽, �⃗�𝛽, ⟨t𝛽,𝛾 | 𝛾 ≤ 𝛽⟩) | 𝛽 < 𝛼⟩ has already been defined according
to Goal 7.2.

Define P𝛼 := (𝑃𝛼,≤𝛼) by letting 𝑃𝛼 be all 𝛼-sequences 𝑝 such that |𝐵𝑝| <
𝜇 and ∀𝛽 < 𝛼(𝑝 � 𝛽 ∈ 𝑃𝛽). Let 𝑝 ≤𝛼 𝑞 iff ∀𝛽 < 𝛼(𝑝 � 𝛽 ≤𝛽 𝑞 � 𝛽). Let
ℓ𝛼 := ℓ1 ∘ 𝜋𝛼,1. Next, we define 𝑐𝛼 : 𝑃𝛼 → 𝐻𝜇, as follows.
II If 𝛼 < 𝜇+, then, for every 𝑝 ∈ 𝑃𝛼, let

𝑐𝛼(𝑝) := {(𝜑𝛼(𝛾), 𝑐𝛾(𝑝 � 𝛾)) | 𝛾 ∈ 𝐵𝑝}.

II If 𝛼 = 𝜇+, then, given 𝑝 ∈ 𝑃𝛼, first let 𝐶 := cl(𝐵𝑝), then define a
function 𝑒 : 𝐶 → 𝐻𝜇 by stipulating:

𝑒(𝛾) := (𝜑𝛾 [𝐶 ∩ 𝛾], 𝑐𝛾(𝑝 � 𝛾)).

Then, let 𝑐𝛼(𝑝) := 𝑖 for the least 𝑖 < 𝜇 such that 𝑒 ⊆ 𝑒𝑖. Set �⃗�𝛼 := �⃗�1∙𝜋𝛼,1.
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Finally, let 𝑝 ∈ 𝑃𝛼, 𝛾 ≤ 𝛼 and 𝑟 ≤𝛾 𝑝 � 𝛾 be arbitrary; we need to
define t𝛼,𝛾(𝑝)(𝑟). For 𝛾 = 𝛼, let t𝛼,𝛾(𝑝)(𝑟) := 𝑟, and for 𝛾 < 𝛼, let
t𝛼,𝛾(𝑝)(𝑟) :=

⋃︀
{t𝛽,𝛾(𝑝 � 𝛽)(𝑟) | 𝛾 ≤ 𝛽 < 𝛼}.

7.2. Verification. Our next task is to verify that for all 𝛼 ≤ 𝜇+, the tuple
(P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼, ⟨t𝛼,𝛾 | 𝛾 ≤ 𝛼⟩) fulfills requirements (i)–(vi) of Goal 7.2. It is
obvious that Clauses (i) and (iii) hold, so we focus on verifying the rest.

The next fact deals with an expanded version of Clause (vi). For the
proof we refer the reader to [PRS20, Lemma 3.5]:

Fact 7.3. For all 𝛾 ≤ 𝛼 ≤ 𝜇+, 𝑝 ∈ 𝑃𝛼 and 𝑟 ∈ 𝑃𝛾 with 𝑟 ≤𝛾 𝑝 � 𝛾, if we let
𝑞 := t𝛼,𝛾(𝑝)(𝑟), then:

(1) 𝑞 � 𝛽 = t𝛽,𝛾(𝑝 � 𝛽)(𝑟) for all 𝛽 ∈ [𝛾, 𝛼];
(2) 𝐵𝑞 = 𝐵𝑝 ∪𝐵𝑟;
(3) 𝑞 � 𝛾 = 𝑟;
(4) If 𝛾 = 0, then 𝑞 = 𝑝;
(5) 𝑝 = (𝑝 � 𝛾) * ∅𝛼 iff 𝑞 = 𝑟 * ∅𝛼;
(6) for all 𝑝′ ≤0

𝛼 𝑝, if 𝑟 ≤0
𝛾 𝑝

′ � 𝛾, then t𝛼,𝛾(𝑝′)(𝑟) ≤𝛼 t𝛼,𝛾(𝑝)(𝑟).

We move on to Clause (ii) and Clause (v):

Lemma 7.4. Suppose that 𝛼 ≤ 𝜇+ is such that for all nonzero 𝛾 < 𝛼,

(P𝛾 , 𝑐𝛾 , ℓ𝛾 , �⃗�𝛾) is (Σ, S⃗)-Prikry. Then:

∙ for all nonzero 𝛾 ≤ 𝛼, (t𝛼,𝛾 , 𝜋𝛼,𝛾) is a nice forking projection from
(P𝛼, ℓ𝛼, �⃗�𝛼) to (P𝛾 , ℓ𝛾 , �⃗�𝛾), where 𝜋𝛼,𝛾 is defined as in Goal 7.2(ii);

∙ if 𝛼 < 𝜇+, then (t𝛼,𝛾 , 𝜋𝛼,𝛾) is furthermore a nice forking projection
from (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) to (P𝛾 , ℓ𝛾 , 𝑐𝛾 , �⃗�𝛾)

∙ if 𝛼 = 𝛾+ 1, then (t𝛼,𝛾 , 𝜋𝛼,𝛾) is super nice and has the weak mixing
property.

Proof. The above items with the exception of niceness can be proved as in
[PRS20, Lemma 3.6]. We also acknowledge that the despite the notion of
super niceness was not considered in [PRS20] it will automatically follow
from niceness and Clause (a) of Building Block II. Thereby, it suffices to
prove the following claim in order to complete the argument:

Claim 7.4.1. For all nonzero 𝛾 ≤ 𝛼, �⃗�𝛼 = �⃗�𝛾 ∙ 𝜋𝛼,𝛾. Also, for each 𝑛,
𝜛𝛼
𝑛 is a nice projection from (P𝛼)≥𝑛 to S𝑛 and for each 𝑘 ≥ 𝑛, 𝜛𝛼

𝑛 � (P𝛼)𝑘
is again a nice projection.

Proof. By induction on 𝛼 ≤ 𝜇+:
I The case 𝛼 = 1 is trivial, since then, 𝛾 = 𝛼 and �⃗�1 = �⃗� ∙ 𝜄.
I Suppose 𝛼 = 𝛼′ + 1 and the claim holds for 𝛼′. Recall that P𝛼 =

P𝛼′+1 was defined by feeding (P𝛼′ , ℓ𝛼′ , 𝑐𝛼′ , �⃗�𝛼′) into Building Block II, thus

obtaining a (Σ, S⃗)-Prikry forcing (A, ℓA, 𝑐A, �⃗�) along with the pair (t, 𝜋).
Also, we have that (𝑥, 𝑦) ∈ 𝐴 iff 𝑥a⟨𝑦⟩ ∈ 𝑃𝛼.

By niceness of (t, 𝜋) and our recursive definition,

𝜛𝛼
𝑛(𝑥a⟨𝑦⟩) = 𝜍𝑛(𝑥, 𝑦) = 𝜛𝛼′

𝑛 (𝜋(𝑥, 𝑦)) = 𝜛𝛼′
𝑛 (𝜋𝛼,𝛼′(𝑥a⟨𝑦⟩)),
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for all 𝑛 < 𝜔 and 𝑥a⟨𝑦⟩ ∈ (𝑃𝛼)≥𝑛. Hence, �⃗�𝛼 = �⃗�𝛼′ ∙ 𝜋𝛼,𝛼′ . Using the
induction hypothesis for �⃗�𝛼′ we arrive at �⃗�𝛼 = �⃗�𝛾 ∙ 𝜋𝛼,𝛾 .

Let us now address the second part of the claim. We just show that for
every 𝑛 < 𝜔, the map 𝜛𝛼

𝑛 is a nice projection from (P𝛼)≥𝑛 to S𝑛. The
statement that 𝜛𝛼

𝑛 � (P𝛼)𝑘 is a nice projection can be proved similarly.
So, let us go over the clauses of Definition 2.2. Clauses (1) and (2) are

evident and Clause (3) follows from Lemma 5.6 applied to (t𝛼,𝛼′ , 𝜋𝛼,𝛼′).

(4): Let 𝑝, 𝑞 ∈ (𝑃𝛼)≥𝑛 and 𝑠 ⪯𝑛 𝜛
𝛼
𝑛(𝑝) be such that 𝑞 ≤𝛼 𝑝 + 𝑠. Then,

(𝑞 �𝛼′, 𝑞(𝛼′))E (𝑝 �𝛼′, 𝑝(𝛼′)) + 𝑠. By Clause (a) of Building Block II we have
that 𝜍𝑛 is a nice projection from A≥𝑛 to S𝑛, hence there is (𝑥, 𝑦) ∈ 𝐴 such
that (𝑥, 𝑦) E𝜍𝑛 (𝑝 � 𝛼′, 𝑝(𝛼′)) and (𝑞 � 𝛼′, 𝑞(𝛼′)) = (𝑥, 𝑦) + 𝜍𝑛((𝑞 � 𝛼′, 𝑞(𝛼′)).

Setting 𝑝′ := 𝑥a⟨𝑦⟩ it is immediate that 𝑝′ ≤𝜛𝛼
𝑛

𝛼 𝑝 and

𝑞 = 𝑝′ +𝜛𝛼′
𝑛 (𝑞 � 𝛼′) = 𝑝′ +𝜛𝛼

𝑛(𝑞).

I For 𝛼 ∈ acc(𝜇+ +1), the first part follows from �⃗�𝛼 := �⃗�1 ∘𝜋𝛼,1 and the
induction hypothesis. About the verification of the Clauses of Definition 2.2,
Clauses (1) and (2) are automatic and Clause (3) follows from Lemma 5.6
applied to (t𝛼,1, 𝜋𝛼,1). About Clause (4) we argue as follows.

Fix 𝑝, 𝑞 ∈ (P𝛼)≥𝑛 and 𝑠 ⪯𝑛 𝜛
𝛼
𝑛(𝑝) be such that 𝑞 ≤𝛼 𝑝 + 𝑠. The goal is

to find a condition 𝑝′ ∈ (𝑃𝛼)≥𝑛 such that 𝑝′ ≤𝜛𝛼
𝑛 𝑝 and 𝑞 = 𝑝′ +𝜛𝛼

𝑛(𝑞).
Let ⟨𝛾𝜏 | 𝜏 ≤ 𝜃⟩ be the increasing enumeration of the closure of 𝐵𝑞.
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For every 𝜏 ∈ nacc(𝜃 + 1), 𝛾𝜏 is a successor ordinal, so we let 𝛽𝜏 denote its
predecessor. By recursion on 𝜏 ≤ 𝜃, we shall define a sequence of conditions
⟨𝑝′𝜏 | 𝜏 ≤ 𝜃⟩ ∈

∏︀
𝜏≤𝜃(𝑃𝛾𝜏 ) such that 𝑝′𝜏 ≤𝜛𝛾𝜏

𝑛
𝛾𝜏 𝑝�𝛾𝜏 and 𝑞�𝛾𝜏 = 𝑝′𝜏+𝜛𝛾𝜏

𝑛 (𝑞�𝛾𝜏 ).
In order to be able to continue with the construction at limits stages we

shall moreover secure that ⟨𝑝′𝜏 | 𝜏 ≤ 𝜃⟩ is coherent: i.e., 𝑝′𝜏 � 𝛾𝜏 ′ = 𝑝𝜏 ′ for
all 𝜏 ′ ≤ 𝜏 . Also, note that ⟨𝜛𝛾𝜏

𝑛 (𝑞 � 𝛾𝜏 ) | 𝜏 ≤ 𝜃⟩ is a constant sequence, so
hereafter we denote by 𝑡 its constant value.

To form the first member of the sequence we argue as follows. First note
that 𝑞 � 1 ≤1 𝑝 � 1 + 𝑠, so that appealing to Definition 2.2(4) for 𝜛1

𝑛 we get

a condition 𝑝′−1 ∈ 𝑃1 such that 𝑝′−1 ≤
𝜛1

𝑛
1 𝑝 � 1 and 𝑞 � 1 = 𝑝′−1 + 𝑡.

Now, let 𝑟0 := t𝛾0,1(𝑝 � 𝛾0)(𝑝
′
−1). A moment’s reflection makes clear

that 𝑟0 + 𝑠 is well-defined and also 𝑞 � 𝛾0 ≤𝛾0 𝑟0 + 𝑠. So, appealing to

Definition 2.2(4) for 𝜛𝛾0
𝑛 we get a condition 𝑝′0 ∈ 𝑃𝛾0 such that 𝑝′0 ≤𝜛

𝛾0
𝑛

𝛾0 𝑟0

and 𝑞 � 𝛾0 = 𝑝′0 + 𝑡. Since 𝑝′−1 ≤𝜛1
𝑛

1 𝑝 � 1 and 𝜛𝛾0
𝑛 = 𝜛1

𝑛 ∘ 𝜋𝛾0,1 we have
𝜛𝛾0
𝑛 (𝑟0) = 𝜛𝛾0

𝑛 (𝑝 � 𝛾0). This completes the first step of the induction.

Let us suppose that we have already constructed ⟨𝑝𝜏 ′ | 𝜏 ′ < 𝜏⟩.
𝜏 is successor: Suppose that 𝜏 = 𝜏 ′+1. Then, set 𝑟𝜏 := t𝛾𝜏 ,𝛾𝜏 ′ (𝑝�𝛾𝜏 )(𝑝′𝜏 ′).

Using the induction hypothesis it is easy to see that 𝑞�𝛾𝜏 ≤𝛾𝜏 𝑟𝜏 +𝑠. Instead
of outright invoking the niceness of 𝜛𝛾𝜏

𝑛 we would like to use that (t𝛾𝜏 ,𝑏𝑒𝑡𝑎𝜏
, 𝜋𝛾𝜏 ,𝛽𝜏 ) is a super nice forking projection (see Definition 5.4). This will

58Recall that 𝐵𝑞 := {𝛽 + 1 | 𝛽 ∈ dom(𝑞) & 𝑞(𝛽) ̸= ∅}.
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secure that the future condition 𝑝′𝜏 will be coherent with 𝑝′𝜏 ′ , and therefore
with all the conditions constructed so far.

Applying the definition of t𝛾𝜏 ,𝛾𝜏 ′ given at page 57 we have

𝑟𝜏 = t𝛾𝜏 ,𝛽𝜏 (𝑝 � 𝛾𝜏 )(t𝛽𝜏 ,𝛾𝜏 ′ (𝑝 � 𝛽𝜏 )(𝑝′𝜏 ′)).

Since 𝑝 � 𝛽𝜏 = 𝑝 � 𝛾𝜏 ′ * ∅𝛽𝜏 , Clause (6) of Fact 7.3 yields

t𝛽𝜏 ,𝛾𝜏 ′ (𝑝 � 𝛽𝜏 )(𝑝′𝜏 ′) = 𝑝′𝜏 ′ * ∅𝛽𝜏 .
So, 𝑟𝜏 = t𝛾𝜏 ,𝛽𝜏 (𝑝 � 𝛾𝜏 )(𝑝′𝜏 ′ * ∅𝛽𝜏 ).

Subclaim 7.4.1.1. 𝑝′𝜏 ′ * ∅𝛽𝜏 ≤𝜛𝛽𝜏
𝑛

𝛽𝜏
𝑝 � 𝛽𝜏 and 𝑞 � 𝛽𝜏 = (𝑝′𝜏 ′ * ∅𝛽𝜏 ) + 𝑡.

Proof. The first part follows immediately from 𝑝′𝜏 ′ ≤𝜛
𝛾′𝜏
𝑛

𝛾𝜏 ′
𝑝 � 𝛾𝜏 ′ . For the

second part note that 𝑞 � 𝛽𝜏 = 𝑞 � 𝛾𝜏 ′ * ∅𝛽𝜏 , hence Fact 7.4(5) combined with
the induction hypothesis yield

𝑞 � 𝛽𝜏 = t𝛽𝜏 ,𝛾𝜏 ′ (𝑞 � 𝛽𝜏 )(𝑞 � 𝛾𝜏 ′) = t𝛽𝜏 ,𝛾𝜏 ′ (𝑞 � 𝛽𝜏 )(𝑝′𝜏 ′ + 𝑡) = (𝑝′𝜏 ′ + 𝑡) * ∅𝛽𝜏 .
On the other hand, using Lemma 5.6 with respect to (t𝛽𝜏 ,𝛾𝜏 ′ , 𝜋𝛽𝜏 ,𝛾𝜏 ′ ),

(𝑝′𝜏 ′ * ∅𝛽𝜏 ) + 𝑡 = t𝛽𝜏 ,𝛾𝜏 ′ (𝑝
′
𝜏 ′ * ∅𝛽𝜏 )(𝑝′𝜏 ′ + 𝑡) = (𝑝′𝜏 ′ + 𝑡) * ∅𝛽𝜏 ,

where the last equality follows again from Fact 7.4(5).
Combining the above expressions we arrive at 𝑞 � 𝛽𝜏 = (𝑝′𝜏 ′ * ∅𝛽𝜏 ) + 𝑡. �

By Clause (f) of Building Block II and the definition of the iteration at
successor stage (see page 57), the pair (t𝛾𝜏 ,𝛽𝜏 , 𝜋𝛾𝜏 ,𝛽𝜏 ) is a super nice forking
projection from (P𝛾𝜏 , ℓ𝛾𝜏 , �⃗�𝛾𝜏 ) to (P𝛽𝜏 , ℓ𝛽𝜏 , �⃗�𝛽𝜏 ). Combining this with the

above subclaim we find a condition 𝑝′𝜏 ≤𝜛𝛾𝜏
𝑛

𝛾𝜏 𝑟𝜏 such that 𝑝′𝜏 � 𝛽𝜏 = 𝑝′𝜏 ′ * ∅𝛽𝜏
and 𝑞 � 𝛾𝜏 = 𝑝′𝜏 + 𝑡. Clearly, 𝑝′𝜏 witnesses the desired property.
𝜏 is limit: Put 𝑝′𝜏 :=

⋃︀
𝜏 ′<𝜏 𝑝

′
𝜏 ′ . Thanks to the induction hypothesis it is

evident that 𝑝′𝜏 ≤𝜛𝛾𝜏
𝑛

𝛾𝜏 𝑝 � 𝛾𝜏 . Also, combining the induction hypothesis with
Lemma 5.6 for (t𝛾𝜏 ,1, 𝜋𝛾𝜏 ,1) we obtain the following chain of equalities:

𝑞�𝛾𝜏 =
⋃︁
𝜏 ′<𝜏

(𝑝′𝜏 ′ +𝑡) =
⋃︁
𝜏 ′<𝜏

t𝛾𝜏 ,1(𝑝
′
𝜏 ′)(𝑝

′
𝜏 ′ �1+𝑡) =

⋃︁
𝜏 ′<𝜏

t𝛾𝜏 ′ ,1(𝑝
′
𝜏 ′)(𝑝

′
𝜏 �1+𝑡).59

Using the definition of the pitchfork at limit stages (see page 58) we get⋃︁
𝜏 ′<𝜏

t𝛾𝜏 ′ ,1(𝑝
′
𝜏 ′)(𝑝

′
𝜏 � 1 + 𝑡) = 𝑝′𝜏 + 𝑡 = t𝛾𝜏 ,1(𝑝

′
𝜏 )(𝑝′𝜏 � 1 + 𝑡),

where the last equality follows from Lemma 5.6 for (t𝛾𝜏 ,1, 𝜋𝛾𝜏 ,1).
Altogether, we have shown hat 𝑝′𝜏 ≤𝜛𝛾𝜏

𝑛
𝛾𝜏 𝑝 � 𝛾𝜏 and 𝑞 � 𝛾𝜏 = 𝑝′𝜏 + 𝑡.

Additionally, 𝑝′𝜏 � 𝛾𝜏 ′ = 𝑝′𝜏 ′ for all 𝜏 ′ < 𝜏 .

Finally, putting 𝑝′ := 𝑝′𝜃 we obtain a condition in (P𝛼)≥𝑛 such that

𝑝′ ≤𝜛𝛼
𝑛

𝛼 𝑝 and 𝑞 = 𝑝′ +𝜛𝛼
𝑛(𝑞).

This completes the argument. �

59Note that for the right-most equality we have used that 𝑝′𝜏 �1 = 𝑝′𝜏 ′ �1, for all 𝜏 ′ < 𝜏.
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This completes the proof of the lemma. �

Recalling Definition 3.3(2), for all nonzero 𝛼 ≤ 𝜇+ and 𝑛 < 𝜔, we need

to identify a candidate for a dense subposet (̊P𝛼)𝑛 = ((𝑃𝛼)𝑛,≤𝛼) of (P𝛼)𝑛.

Definition 7.5. For each nonzero 𝛾 < 𝜇+, we let tp𝛾+1 be a type witnessing
that (t𝛾+1,𝛾 , 𝜋𝛾+1,𝛾) has the weak mixing property.

Definition 7.6. Let 𝑛 < 𝜔. Set 𝑃1𝑛 := 1(𝑄𝑛).60 Then, for each 𝛼 ∈ [2, 𝜇+],

define 𝑃𝛼𝑛 by recursion:

𝑃𝛼𝑛 :=

{︃
{𝑝 ∈ 𝑃𝛼 | 𝜋𝛼,𝛽(𝑝) ∈ 𝑃𝛽𝑛 & mtp𝛽+1(𝑝) = 0}, if 𝛼 = 𝛽 + 1;

{𝑝 ∈ 𝑃𝛼 | 𝜋𝛼,1(𝑝) ∈ 𝑃1𝑛 & ∀𝛾 ∈ 𝐵𝑝 mtp𝛾(𝜋𝛼,𝛾(𝑝)) = 0}, otherwise.

Lemma 7.7. Let 𝑛 < 𝜔 and 1 ≤ 𝛽 < 𝛼 ≤ 𝜇+. Then:

(1) 𝜋𝛼,𝛽“𝑃𝛼𝑛 ⊆ 𝑃𝛽𝑛;

(2) For every 𝑝 ∈ 𝑃𝛽𝑛, 𝑝 * ∅𝛿 ∈ 𝑃𝛼𝑛.

Proof. By induction, relying on Clause (4) of Definition 5.7. �

We now move to establish Clause (iv) of Goal 7.2.

Lemma 7.8. Let 𝛼 ∈ [2, 𝜇+]. Then, for all 𝑛 < 𝜔 and every directed set

of conditions 𝐷 in (̊P𝛼)𝑛 (resp. (̊P𝛼)
𝜛𝛼

𝑛
𝑛 ) of size <ℵ1 (resp. <𝜎*𝑛) there is

𝑞 ∈ (𝑃𝛼)𝑛 such that 𝑞 is a ≤𝛼 (resp. ≤𝜛𝛼
𝑛

𝑛 ) lower bound for 𝐷.
Moreover, 𝐵𝑞 =

⋃︀
𝑝∈𝐷 𝐵𝑝.

Proof. The argument is similar to that of [PRS20, Lemma 3.13]. �

Remark 7.9. An straightforward modification of the lemma shows that for
all 𝛼 ∈ [2, 𝜇+] and 𝑛 < 𝜔, (P𝛼)

𝜋𝛼,1
𝑛 is 𝜎*𝑛-directed-closed.

Theorem 7.10. For all nonzero 𝛼 ≤ 𝜇+, (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) satisfies all the

requirements to be a (Σ, S⃗)-Prikry quadruple, with the possible exceptions of
Clause (7) and the density requirements in Clauses (2) and (9).

Additionally, ∅𝛼 is the greatest condition in P𝛼, ℓ𝛼 = ℓ1 ∘ 𝜋𝛼,1, ∅𝛼 P𝛼
�̌� = 𝜅+ and �⃗�𝛼 is a coherent sequence of nice projections such that

�⃗�𝛼 = �⃗�𝛾 ∙ 𝜋𝛼,𝛾 for every 𝛾 ≤ 𝛼.

Under the extra hypothesis that for each 𝛼 ∈ acc(𝜇++1) and every 𝑛 < 𝜔,

(̊P𝜛
𝛼
𝑛

𝛼 )𝑛 is a dense subposet of (P𝜛
𝛼
𝑛

𝛼 )𝑛, we have that for all nonzero 𝛼 ≤ 𝜇+,

(P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) is (Σ, S⃗)-Prikry quadruple having property 𝒟.

Proof. We argue by induction on 𝛼 ≤ 𝜇+. The base case 𝛼 = 1 follows from
the fact that P1 is isomorphic to Q given by Building Block I. The successor
step 𝛼 = 𝛽 + 1 follows from the fact that P𝛽+1 was obtained by invoking
Building Block II.

60Here, 𝑄𝑛 is obtained from Clause (2) of Definition 3.3 with respect to the triple
(Q, ℓ, 𝑐) given by Building Block I.
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Next, suppose that 𝛼 ∈ acc(𝜇+ + 1) is such that the conclusion of the
lemma holds below 𝛼. In particular, the hypothesis of Lemma 7.4 are sat-
isfied, so that, for all nonzero 𝛽 ≤ 𝛾 ≤ 𝛼, (t𝛾,𝛽, 𝜋𝛾,𝛽) is a nice forking pro-
jection from (P𝛾 , ℓ𝛾 , �⃗�𝛾) to (P𝛽, ℓ𝛽, �⃗�𝛽). By the very same proof of [PRS20,
Lemma 3.14], we have that Clauses (1) and (3)–(6) of Definition 3.3 hold for
(P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼), and that ℓ𝛼 = ℓ1 ∘ 𝜋𝛼,1. Also, Clauses (2) and (9) –without
the density requirement– follow from Lemma 7.8.

On the other hand, the equality �⃗�𝛼 = �⃗�𝛾 ∙𝜋𝛼,𝛾 follows from Lemma 7.4.
Arguing as in [PRS20, Claim 3.14.2], we also have that 1lP𝛼 P𝛼 �̌� = �̌�+.
Finally, since �⃗�1 is coherent (see Building Block I) and (t𝛼,1, 𝜋𝛼,1) is a nice
forking projection, Lemma 5.17 implies that �⃗�𝛼 is coherent.

To complete the proof let us additionally assume that for every 𝑛, (̊P𝜛
𝛼
𝑛

𝛼 )𝑛
is a dense subposet of (P𝜛

𝛼
𝑛

𝛼 )𝑛. Then, in particular, (̊P𝛼)𝑛 is a dense sub-
poset of (P𝛼)𝑛. In effect, the density requirement in Clauses (2) and (9) is
automatically fulfilled. About Clause (7), we take advantage of this extra
assumption to invoke [PRS20, Corollary 3.12] and conclude that (P𝛼, ℓ𝛼)
has property 𝒟. Consequently, Clause (7) for (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) follows by
combining this latter fact with Lemma 5.12. �

8. A proof of the Main Theorem

In this section, we arrive at the primary application of the framework
developed thus far. We will be constructing a model where GCH holds
below ℵ𝜔, 2ℵ𝜔 = ℵ𝜔+2 and every stationary subset of ℵ𝜔+1 reflects.

8.1. Setting up the ground model. We want to obtain a ground model
with GCH and 𝜔-many supercompact cardinals, which are Laver indestruc-
tible under GCH-preserving forcing. The first lemma must be well-known,
but we could not find it in the literature, so we give an outline of the proof.

Lemma 8.1. Suppose �⃗� = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an increasing sequence of super-
compact cardinals. Then there is a generic extension where GCH holds and
�⃗� remains an increasing sequence of supercompact cardinals.

Proof. By preparing the ground model á la Laver [Lav78], we may assume
that, for each 𝑛 < 𝜔, the supercompactness of 𝜅𝑛 is indestructible under
𝜅𝑛-directed-closed forcing.

Claim 8.1.1. There is a generic extension in which �⃗� remains an increasing
sequence of supercompact cardinals, and Θ := {𝜃 ∈ CARD | 𝜃<𝜃 = 𝜃} forms
a proper class. �

We now work in the generic extension produced by the preceding claim.
For ease of notation, we denote it by 𝑉 .

Let J be Jensen’s iteration to force the GCH. Namely, J is the inverse
limit of the Easton-support iteration ⟨J𝛼; Q̇𝛽 | 𝛽 ≤ 𝛼 ∈ Ord⟩ such that, if

1lJ𝛼 J𝛼 “𝛼 is a cardinal”, then 1lJ𝛼 J𝛼 “Q̇𝛼 = ˙Add(𝛼+, 1)” and 1lJ𝛼 J𝛼 “Q̇𝛼
trivial”, otherwise. Let 𝐺 be a J-generic filter over 𝑉 .
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Let 𝑛 < 𝜔. We claim that J preserves the supercompactness of 𝜅𝑛. To
this end, let 𝜃 be an arbitrary cardinal. By possibly enlarging 𝜃, we may
assume that 𝜃 ∈ Θ. Let 𝑗 : 𝑉 → 𝑀 be an elementary embedding induced
by a 𝜃-supercompact measure over 𝒫𝜅𝑛(𝜃). In particular, we are taking 𝑗
such that crit(𝑗) = 𝜅𝑛, 𝑗(𝜅𝑛) > 𝜃,

(︀
𝜃𝑀

)︀
∩ 𝑉 ⊆𝑀 and

𝑀 = {𝑗(𝑓)(𝑗“𝜃) | 𝑓 : 𝒫𝜅𝑛(𝜃) → 𝑉 }.
Observe that J can be factored into three forcings: the iteration up to 𝜅𝑛,
the iteration in the interval [𝜅𝑛, 𝜃) and, finally, the iteration in the interval
[𝜃,Ord). For an interval of ordinals ℐ, let 𝐺ℐ denote the Jℐ-generic filter
induced by 𝐺. Similarly, we define 𝐺*

ℐ := 𝐺ℐ ∩ 𝑗(J)ℐ .

Claim 8.1.2. In 𝑉 [𝐺], there is a lifting 𝑗1 : 𝑉 [𝐺𝜅𝑛 ] →𝑀 [𝐺*
𝑗(𝜅𝑛)

] of 𝑗 such

that (︁
𝜃𝑀 [𝐺*

𝑗(𝜅𝑛)
]
)︁
∩ 𝑉 [𝐺*

𝑗(𝜅𝑛)
] ⊆𝑀 [𝐺*

𝑗(𝜅𝑛)
].

Moreover, 𝐻
𝑀 [𝐺*

𝑗(𝜅𝑛)
]

𝜃+
⊆ 𝑉 [𝐺𝜃]. �

Claim 8.1.3. In 𝑉 [𝐺], there is a lifting 𝑗2 : 𝑉 [𝐺𝜃] →𝑀 [𝐺*
𝑗(𝜃)] of 𝑗1. �

Claim 8.1.4. In 𝑉 [𝐺], there is a lifting 𝑗3 : 𝑉 [𝐺] →𝑀 [𝐺*
𝑗(𝜃) * �̇�] of 𝑗2. �

Finally, define

𝒰 := {𝑋 ∈ 𝒫𝑉 [𝐺]
𝜅𝑛 (𝜃) | 𝑗“𝜃 ∈ 𝑗3(𝑋)}.

As 𝑗“𝜃 ∈ 𝑀 ⊆ 𝑀 [𝐺*
𝑗(𝜃) * �̇�], standard arguments now show that 𝒰 is a

𝜃-supercompact measure over 𝒫𝑉 [𝐺]
𝜅𝑛 (𝜃). In particular, 𝜅𝑛 is 𝜃-supercompact

in 𝑉 [𝐺], as wanted. �

Note that in the model of the conclusion of the above lemma, the 𝜅𝑛’s are
no longer indestructible. Our next task is to remedy that, while maintaining
GCH. For this, we need the following slight variation of the usual Laver
preparation [Lav78].

Lemma 8.2. Suppose that GCH holds, 𝜒 < 𝜅 are infinite regular cardi-
nals, and 𝜅 is supercompact. Then there exists a 𝜒-directed-closed notion of
forcing L𝜅𝜒 that preserves GCH and makes the supercompactness of 𝜅 inde-
structible under 𝜅-directed-closed forcings that preserve GCH.

Proof. Let 𝑓 be a Laver function on 𝜅, as in [Cum10, Theorem 24.1]. Let L𝜅𝜒
be the direct limit of the Laver-style forcing iteration ⟨R𝛼; Q̇𝛽 | 𝜒 ≤ 𝛽 < 𝛼 <
𝜅⟩ where, if 𝛼 is inaccessible, 1lR𝛼 R𝛼 GCH, and 𝑓(𝛼) encodes an R𝛼-name
𝜏 ∈ 𝐻𝛼+ for some 𝛼-directed-closed forcing that preserves the GCH of 𝑉 R𝛼 ,
then Q̇𝛼 is chosen to be such R𝛼-name. Otherwise, Q̇𝛼 is chosen to be the
trivial forcing.

As in the proof of [Cum10, Theorem 24.12], we have that after forcing with
L𝜅𝜒, the supercompactness of 𝜅 becomes indestructible under 𝜅-directed-
closed forcings that preserve GCH.
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We claim that GCH holds in 𝑉 L
𝜅
𝜒 . This is clear for cardinals ≥ 𝜅, since

the iteration has size 𝜅. Now, let 𝜆 < 𝜅 and inductively assume GCH<𝜆.
Observe that L𝜅𝜒 ∼= R𝜆+1 * Q̇, where Q̇ is an R𝜆+1-name for a 𝜆+-directed-

closed forcing. In particular, 𝒫(𝜆)𝑉
L𝜅𝜒

= 𝒫(𝜆)𝑉
R𝜆+1

, and so it is enough to
show that 𝑉 R𝜆+1 |= CH𝜆. There are two cases.

If 𝜆 is singular, then |R𝜆| = 𝜆+, and Q̇𝜆 is trivial, so 𝑉 R𝜆+1 |= CH𝜆.
Otherwise, let 𝛼 be the largest inaccessible, such that 𝛼 ≤ 𝜆. Then R𝜆+1

is just R𝛼*Q̇𝛼 followed by trivial forcing. Since |R𝛼| = 𝛼 and by construction

Q̇𝛼 preserves GCH, the result follows. �

Corollary 8.3. Suppose that �⃗� = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an increasing sequence of
supercompact cardinals. Then, in some forcing extension, all of the following
hold:

(1) GCH;
(2) �⃗� is an increasing sequence of supercompact cardinals;
(3) For every 𝑛 < 𝜔, the supercompactness of 𝜅𝑛 is indestructible under

notions of forcing that are 𝜅𝑛-directed-closed and preserves the GCH.

Proof. By Lemma 8.1, we may assume that we are working in a model in
which Clauses (1) and (2) already hold. Next, let L be the direct limit of the

iteration ⟨L𝑛 * Q̇𝑛 | 𝑛 < 𝜔⟩, where L0 is the trivial forcing and, for each 𝑛,

if 1l L𝑛 “𝜅𝑛 is supercompact”, then 1l L𝑛 Q̇𝑛 is the (𝜅𝑛−1)-directed-closed,
GCH-preserving forcing making the supercompactness of 𝜅𝑛 indestructible
under GCH-preserving 𝜅𝑛-directed-closed notions of forcing. (More precisely,

in the notation of the previous lemma, Q̇𝑛 is L̇𝜅𝑛𝜅𝑛−1
, where, by convention,

𝜅−1 is ℵ0).
Note that, by induction on 𝑛 < 𝜔, and Lemma 8.2, we maintain that

1l L𝑛 “𝜅𝑛 is supercompact and GCH holds”. And then when we force with

Q̇𝑛 over that model, we make this supercompacness indestructible under
GCH -preserving forcing.

Then, after forcing with L, GCH holds, and each 𝜅𝑛 remains supercom-
pact, indestructible under 𝜅𝑛-directed-closed forcings that preserve GCH.

�

8.2. Connecting the dots.

Setup 8. For the rest of this section, we make the following assumptions:

∙ �⃗� = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an increasing sequence of supercompact cardi-
nals. By convention, we set 𝜅−1 := ℵ0;

∙ For every 𝑛 < 𝜔, the supercompactness of 𝜅𝑛 is indestructible under
notions of forcing that are 𝜅𝑛-directed-closed and preserve the GCH;

∙ 𝜅 := sup𝑛<𝜔 𝜅𝑛, 𝜇 := 𝜅+ and 𝜆 := 𝜅++;
∙ GCH holds below 𝜆. In particular, 2𝜅 = 𝜅+ and 2𝜇 = 𝜇+;
∙ Σ := ⟨𝜎𝑛 | 𝑛 < 𝜔⟩, where 𝜎0 := ℵ1 and 𝜎𝑛+1 := (𝜅𝑛)+ for all 𝑛 < 𝜔.61

61By convention, we set 𝜎−2 and 𝜎−1 to be ℵ0.
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∙ S⃗ is as in Definition 4.11.

We now want to appeal to the iteration scheme of the previous section.

First, observe that 𝜇, ⟨(𝜎𝑛, 𝜇) | 𝑛 < 𝜔⟩, S⃗ and Σ respectively fulfill all the
blanket assumptions of Setup 7.

We now introduce our three building blocks of choice:

Building Block I. We let (Q, ℓ, 𝑐, �⃗�) be EBPFC as defined in Section 4.

By Corollary 4.25, this is a (Σ, S⃗)-Prikry that has property 𝒟, and �⃗� is a
coherent sequence of nice projection. Also, Q is a subset of 𝐻𝜇+ and, by

Lemma 4.24, 1lQ Q �̌� = �̌�+. In addition, 𝜅 is singular, so that we have

1lQ Q “𝜅 is singular”. Finally, for all 𝑛 < 𝜔, Q̊𝑛 = Q𝑛 (see Lemmas 4.18
and 4.23).

Building Block II. Suppose that (P, ℓ, 𝑐, �⃗�) is a (Σ, S⃗)-Prikry quadruple
having property 𝒟 such that P = (𝑃,≤) is a subset of 𝐻𝜇+ , �⃗� is a coherent

sequence of nice projections, 1lP P �̌� = �̌�+ and 1lP P “𝜅 is singular”.
For every 𝑟⋆ ∈ 𝑃 and a P-name 𝑧 for an 𝑟⋆-fragile stationary subset of 𝜇,

there are a (Σ, S⃗)-Prikry quadruple (A, ℓA, 𝑐A, �⃗�) having property 𝒟, and a
pair of maps (t, 𝜋) such that all the following hold:

(a) (t, 𝜋) is a super nice forking projection from (A, ℓA, 𝑐A, �⃗�) to (P, ℓ, 𝑐, �⃗�)
that has the weak mixing property;

(b) �⃗� is a coherent sequence of nice projections;
(c) 1lA A �̌� = �̌�+;
(d) A = (𝐴,E) is a subset of 𝐻𝜇+ ;

(e) For every 𝑛 < 𝜔, Å𝜋𝑛 is 𝜇-directed-closed;
(f) if 𝑟⋆ ∈ 𝑃 and 𝑧 is a P-name for an 𝑟⋆-fragile stationary subset of 𝜇

then

⌈𝑟⋆⌉A A “𝑧 is nonstationary”.

Remark 8.4.

I If 𝑟⋆ ∈ 𝑃 forces that 𝑧 is a P-name for an 𝑟⋆-fragile subset of 𝜇, we
first find some P-name 𝑧 such that 1lP forces that 𝑧 is a stationary
subset of 𝜇, 𝑟⋆ P 𝑧 = 𝑧 and 𝑧 is 1lP-fragile. Subsequently, we
obtain (A, ℓA, 𝑐A, �⃗�) and (t, 𝜋) by appealing to Corollary 6.19 with

the (Σ, S⃗)-Prikry triple (P, ℓP, 𝑐P, �⃗�), the condition 1lP and the P-

name 𝑧. In effect, ⌈1lP⌉A forces that 𝑧 is nonstationary, so that ⌈𝑟⋆⌉A
forces that 𝑧 is nonstationary.

I Otherwise, we invoke Corollary 6.19 with the (Σ, S⃗)-Prikry forcing
(P, ℓP, 𝑐P, �⃗�), the condition 1lP and the name 𝑧 := ∅.

Building Block III. As 2𝜇 = 𝜇+, we fix a surjection 𝜓 : 𝜇+ → 𝐻𝜇+ such

that the preimage of any singleton is cofinal in 𝜇+.

The next lemma deals with the extra assumption in Theorem 7.10:
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Lemma 8.5 (Density of the rings). For each 𝛼 ∈ acc(𝜇+ + 1) and every

integer 𝑛 < 𝜔, (̊P𝜛
𝛼
𝑛

𝛼 )𝑛 is a dense subposet of (P𝜛
𝛼
𝑛

𝛼 )𝑛.
62

Proof. This follows in the same lines of [PRS20, Lemma 4.24], with the only
difference that now we use the following:

(1) At successor stages we can get into the ring (̊P𝜛
𝛼
𝑛

𝛼 )𝑛 by ≤𝜛𝛼
𝑛

𝛼 -extending.
This is granted by Lemma 6.2.

(2) For all 𝛾 < 𝛼, (̊P𝜛
𝛾
𝑛

𝛾 )𝑛 is 𝜎𝑛-directed-closed. With this property we

take care of the limit stages. (In [PRS20], the full ring (̊P𝛾)𝑛 was
𝜎𝑛-closed). We can make this replacement, because of the first item
above. �

Now, we can appeal to the iteration scheme of Section 7 with these build-
ing blocks, and obtain, in return, a sequence ⟨(P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼) | 1 ≤ 𝛼 ≤ 𝜇+⟩
of (Σ, S⃗)-Prikry quadruples. By Lemma 7.8 and Theorem 7.10 (see also

Remark 7.9), for all nonzero 𝛼 ≤ 𝜇+, (̊P𝛼)
𝜋𝛼,1
𝑛 is 𝜇-directed-closed and

1lP𝛼 P𝛼 �̌� = �̌�+. Note that by the first clause of Goal 7.2, |𝑃𝛼| ≤ 𝜇+

for every 𝛼 ≤ 𝜇+.

Lemma 8.6. Let 𝑛 ∈ 𝜔∖2 and 𝛼 ∈ [2, 𝜇+). Then ((P𝛼)𝑛,S𝑛, 𝜛𝛼
𝑛) is suitable

for reflection with respect to ⟨𝜎𝑛−2, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩.
Proof. We go over the clauses of Lemma 5.18 with P𝛼 playing the role of A,
𝜛𝛼
𝑛 playing the role of 𝜍𝑛, and P1 playing the role of P.
As P1 is given by Building Block I, which is given by Section 4, we simplify

the notation here, and — for the scope of this proof — we let P denote the
forcing P from Section 4.

Clause (i) is part of the assumptions of Setup 8. Clauses (ii) and (iii) are
given by our iteration theorem. Clause (iv) is due to Corollary 4.30,63 and
the fact that P1 is the Gitik’s EBPFC. Now, we turn to address Clause (v).

That is, we need to prove that in any generic extension by S𝑛 × (P𝛼)
𝜛𝛼

𝑛
𝑛 ,

|𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜅𝑛−1)
++.

The upcoming discussion assumes the notation of Section 4. By Lemma 4.32,
we have:

(1) T𝑛 has the 𝜅𝑛-cc and size 𝜅𝑛;
(2) 𝜓𝑛 defines a nice projection;

(3) P𝜓𝑛
𝑛 is 𝜅𝑛-directed-closed;

(4) for each 𝑝 ∈ 𝑃𝑛, P𝑛 ↓ 𝑝 and (T𝑛 ↓ 𝜓𝑛(𝑝)) × ((P𝜓𝑛)𝑛 ↓ 𝑝) are forcing
equivalent.

By Lemma 4.29, P𝑛 forces |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+ = (𝜅𝑛−1)
++, and

by our remark before the statement of this lemma, (P𝛼)𝜋𝛼,1
𝑛 is 𝜇-directed-

closed, hence 𝜅𝑛-directed-closed. Combining Clauses (1), (3) and (4) above

62(̊P𝛼)𝑛 is as in Definition 7.6.
63Since (P𝑛, S𝑛, 𝜛𝑛) is suitable for reflection with respect to ⟨𝜎𝑛−1, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩ then

so is with respect to ⟨𝜎𝑛−2, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩.
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with Easton’s Lemma, (P𝜓𝑛)𝑛× (P𝛼)𝜋𝛼,1
𝑛 is 𝜅𝑛-distributive over 𝑉 T𝑛 , and so

P𝑛 × (P𝛼)𝜋𝛼,1
𝑛 forces 𝜅𝑛 = (𝜅𝑛−1)

++. Moreover, as P𝑛 × (P𝛼)𝜋𝛼,1
𝑛 projects

to P𝑛 and the former preserves 𝜅𝑛, it also forces |𝜇| = cf(𝜇). Altogether,
P𝑛×(P𝛼)𝜋𝛼,1

𝑛 forces |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜅𝑛−1)
++. To establish that the same

configuration is being forced by S𝑛× (P𝛼)
𝜛𝛼

𝑛
𝑛 , we give a sandwich argument,

as follows:

∙ P𝑛 × (P𝛼)
𝜋𝛼,1
𝑛 projects to S𝑛 × (P𝛼)

𝜛𝛼
𝑛

𝑛 , as witnessed by (𝑝, 𝑞) ↦→
(𝜛𝑛(𝑝), 𝑞);

∙ For any condition 𝑝 in (P𝛼)𝑛, (S𝑛 ↓ 𝜛𝛼
𝑛(𝑝)) × ((P𝛼)

𝜛𝛼
𝑛

𝑛 ↓ 𝑝) projects
to (P𝛼)𝑛 ↓ 𝑝, by Definition 2.2(4).

∙ (P𝛼)𝑛 projects to P𝑛 via 𝜋𝛼,1.

This completes the proof. �

Lemma 8.7. Let 𝑛 < 𝜔 and 0 < 𝛼 < 𝜇+. Then (P𝛼)
𝜛𝛼

𝑛
𝑛 preserves GCH.

Proof. The case 𝛼 = 1 is taken care of by Lemma 4.33.

Now, let 𝛼 ≥ 2. Since (P𝛼)
𝜛𝛼

𝑛
𝑛 contains a 𝜎𝑛-directed-closed dense subset,

it preserves GCH below 𝜎𝑛. By the sandwich analysis from the proof of

Lemma 8.6, in any generic extension by (P𝛼)
𝜛𝛼

𝑛
𝑛 , |𝜇| = cf(𝜇) = 𝜅𝑛 = (𝜎𝑛)+.

So, as (P𝛼)
𝜛𝛼

𝑛
𝑛 is a notion of forcing of size ≤ 𝜇+, collapsing 𝜇 to 𝜅𝑛, it

preserves GCH𝜃 for any cardinal 𝜃 > 𝜅𝑛.

It thus left to verify that (P𝛼)
𝜛𝛼

𝑛
𝑛 forces 2𝜃 = 𝜃+ for 𝜃 ∈ {𝜎𝑛, 𝜅𝑛}.

I Arguing as in Lemma 8.6, for any condition 𝑝 in (P𝛼)𝑛, (T𝑛 ↓ 𝜓𝑛(𝑝))×(︀
((P𝜓𝑛)𝑛 ↓ 𝑝) × (P𝛼)

𝜋𝛼,1
𝑛

)︀
projects onto (P𝛼)

𝜛𝛼
𝑛

𝑛 . Recall that the first factor
of the product is a 𝜅𝑛-cc forcing of size ≤ 𝜅𝑛. By Lemma 7.8, the second
factor is forcing equivalent to a 𝜅𝑛-directed-closed forcing. Thus, by Easton’s
lemma, this product preserves CH𝜎𝑛 if and only if T𝑛 ↓ 𝜓𝑛(𝑝) does. And
this is indeed the case, as the number of T𝑛-nice names for subsets of 𝜎𝑛 is
at most 𝜅<𝜅𝑛𝑛 = 𝜅𝑛 = (𝜎𝑛)+.
I Again, arguing as in Lemma 8.6, (P1)𝑛 × (P𝛼)

𝜋𝛼,1
𝑛 projects onto S𝑛 ×

(P𝛼)
𝜛𝛼

𝑛
𝑛 , which projects onto (P𝛼)

𝜛𝛼
𝑛

𝑛 . Since (P𝛼)
𝜋𝛼,1
𝑛 is forcing equivalent to a

𝜇-directed-closed, it preserves CH𝜎𝑛 . Also, it preserves 𝜇 and so, by Lemma
4.33(1) and the absolutness of the 𝜇+-Linked property, (P1)𝑛 is also 𝜇+-

Linked in 𝑉 (P𝛼)
𝜋𝛼,1
𝑛 . Once again, counting-of-nice-names arguments implies

that this latter forcing forces 2𝜅𝑛 ≤ 𝜇+ = (𝜅𝑛)+. Thus, (P1)𝑛 × (P𝛼)
𝜋𝛼,1
𝑛

preserves CH𝜅𝑛 and so does (P𝛼)
𝜛𝛼

𝑛
𝑛 . �

Theorem 8.8. In 𝑉 P𝜇+ , all of the following hold true:

(1) All cardinals ≥ 𝜅 are preserved;
(2) 𝜅 = ℵ𝜔, 𝜇 = ℵ𝜔+1 and 𝜆 = ℵ𝜔+2;
(3) 2ℵ𝑛 = ℵ𝑛+1 for all 𝑛 < 𝜔;
(4) 2ℵ𝜔 = ℵ𝜔+2;
(5) Every stationary subset of ℵ𝜔+1 reflects.
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Proof. (1) We already know that 1lP𝜇+ P𝛼 �̌� = �̌�+. By Lemma 3.14(2), 𝜅

remains strong limit cardinal in 𝑉 P𝜇+ . Finally, as Clause (3) of Definition 3.3
holds for (P𝜇+ , ℓ𝜇+ , 𝑐𝜇+ , �⃗�𝜇+), P𝜇+ has the 𝜇+-chain-condition, so that all

cardinals ≥ 𝜅++ are preserved.
(2) Let 𝐺 ⊆ P𝜇+ be an arbitrary generic over 𝑉 . By virtue of Clause (1)

and Setup 8, it suffices to prove that 𝑉 [𝐺] |= 𝜅 = ℵ𝜔. Let 𝐺1 the P1-generic
filter generated by 𝐺 and 𝜋𝜇+,1. By Theorem 4.1, 𝑉 [𝐺1] |= 𝜅 = ℵ𝜔. Thus,
let us prove that 𝑉 [𝐺] and 𝑉 [𝐺1] have the same cardinals ≤ 𝜅.

Of course, 𝑉 [𝐺1] ⊆ 𝑉 [𝐺], and so any 𝑉 [𝐺]-cardinal is also a 𝑉 [𝐺1]-
cardinal. Towards a contradiction, suppose that there is a 𝑉 [𝐺1]-cardinal
𝜃 < 𝜅 that ceases to be so in 𝑉 [𝐺]. Any surjection witnessing this can
be encoded as a bounded subset of 𝜅, hence as a bounded subset of some
𝜎𝑛 for some 𝑛 < 𝜔. Thus, Lemma 3.14(1) implies that 𝜃 is not a cardinal
in 𝑉 [𝐻𝑛], where 𝐻𝑛 is the S𝑛-generic filter generated by 𝐺1 and 𝜛1

𝑛. As
𝑉 [𝐻𝑛] ⊆ 𝑉 [𝐺1], 𝜃 is not a cardinal in 𝑉 [𝐺1], which is a contradiction.

(3) On one hand, by Lemma 3.14(1), 𝒫(ℵ𝑛)𝑉
P
𝜇+

= 𝒫(ℵ𝑛)𝑉
S𝑚

for some
𝑚 < 𝜔. On the other hand, as GCH<𝜆 holds (cf. Setup 8), Remark 4.12

shows that S𝑚 preserves CHℵ𝑛 . Altogether, 𝑉 P𝜇+ |= CHℵ𝑛 .
(4) By Setup 8, 𝑉 |= 2𝜅 = 𝜅+. In addition, P𝜇+ is isomorphic to a

notion of forcing lying in 𝐻𝜇+ (see [PRS20, Remark 3.3(1)]) and |𝐻𝜇+ | = 𝜆.

Thus, 𝑉 P𝜇+ |= 2𝜅 ≤ 𝜆. In addition, P𝜇+ projects to P1, which is isomorphic
to Q, being a poset blowing up 2𝜅 to 𝜆, as seen in Theorem 4.1, so that

𝑉 P𝜇+ |= 2𝜅 ≥ 𝜆. So, 𝑉 P𝜇+ |= 2𝜅 = 𝜆. Thus, together with Clause (2),

𝑉 P𝜇+ |= 2ℵ𝜔 = ℵ𝜔+2.
(5) Let 𝐺 be P𝜇+-generic over 𝑉 and hereafter work in 𝑉 [𝐺]. Towards a

contradiction, suppose that there exists a stationary set 𝑇 ⊆ 𝜇 that does not
reflect. By shrinking, we may assume the existence of some regular cardinal
𝜃 < 𝜇 such that 𝑇 ⊆ 𝐸𝜇𝜃 . Fix 𝑟* ∈ 𝐺 and a P𝜇+-name 𝜏 such that 𝜏𝐺 is equal
to such a 𝑇 and such that 𝑟* forces 𝜏 to be a stationary subset of 𝜇 that
does not reflect. Since 𝜇 = 𝜅+ and 𝜅 is singular in 𝑉 , by possibly enlarging
𝑟*, we may assume that 𝑟* forces 𝜏 to be a subset of Γℓ(𝑟*) (see page 53).
Furthermore, we may require that 𝜏 be a nice name, i.e., each element of 𝜏
is a pair (𝜉, 𝑝) where (𝜉, 𝑝) ∈ Γℓ(𝑟*) × 𝑃𝜇+ , and, for each ordinal 𝜉 ∈ Γℓ(𝑟*),

the set {𝑝 ∈ 𝑃𝜇+ | (𝜉, 𝑝) ∈ 𝜏} is a maximal antichain.
As P𝜇+ satisfies Clause (3) of Definition 3.3, P𝜇+ has in particular the

𝜇+-cc. Consequently, there exists a large enough 𝛽 < 𝜇+ such that

𝐵𝑟* ∪
⋃︁

{𝐵𝑝 | (𝜉, 𝑝) ∈ 𝜏} ⊆ 𝛽.

Let 𝑟 := 𝑟* � 𝛽 and set

𝜎 := {(𝜉, 𝑝 � 𝛽) | (𝜉, 𝑝) ∈ 𝜏}.
From the choice of Building Block III, we may find a large enough 𝛼 < 𝜇+

with 𝛼 > 𝛽 such that 𝜓(𝛼) = (𝛽, 𝑟, 𝜎). As 𝛽 < 𝛼, 𝑟 ∈ 𝑃𝛽 and 𝜎 is a P𝛽-name,
the definition of our iteration at step 𝛼 + 1 involves appealing to Building
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Block II with (P𝛼, ℓ𝛼, 𝑐𝛼, �⃗�𝛼), 𝑟⋆ := 𝑟*∅𝛼 and 𝑧 := 𝑖𝛼𝛽(𝜎).64 For each ordinal

𝜂 < 𝜇+, denote 𝐺𝜂 := 𝜋𝜇+,𝜂[𝐺]. By our choice of 𝛽 and since 𝛼 > 𝛽, we
have

𝜏 = {(𝜉, 𝑝 * ∅𝜇+) | (𝜉, 𝑝) ∈ 𝜎} = {(𝜉, 𝑝 * ∅𝜇+) | (𝜉, 𝑝) ∈ 𝑧},
so that, in 𝑉 [𝐺],

𝑇 = 𝜏𝐺 = 𝜎𝐺𝛽
= 𝑧𝐺𝛼 .

In addition, 𝑟* = 𝑟⋆ * ∅𝜇+ and so ℓ(𝑟*) = ℓ(𝑟⋆).
As 𝑟* forces that 𝜏 is a non-reflecting stationary subset of Γℓ(𝑟⋆), it follows

that 𝑟⋆ P𝛼-forces the same about 𝑧.

Claim 8.8.1. 𝑧 is 𝑟⋆-fragile.

Proof. Recalling Lemma 6.20, it suffices to prove that for every 𝑛 < 𝜔,

𝑉 (P𝛼)𝑛 |= Refl(𝐸𝜇<𝜎𝑛−2
, 𝐸𝜇<𝜎𝑛).

This is trivially the case for 𝑛 ≤ 1. So, let us fix an arbitrary 𝑛 ≥ 2.
By Lemma 8.6, ((P𝛼)𝑛, S𝑛, 𝜛𝛼

𝑛) is suitable for reflection with respect to

⟨𝜎𝑛−2, 𝜅𝑛−1, 𝜅𝑛, 𝜇⟩. Since (P𝛼)
𝜛𝛼

𝑛
𝑛 is forcing equivalent to a 𝜎𝑛-directed-

closed forcing and (by Lemma 8.7) it preserves GCH, 𝜅𝑛−1 is a supercompact

cardinal indestructible under forcing with (P𝛼)
𝜛𝛼

𝑛
𝑛 . So, recalling Setup 8,

(P𝛼)
𝜛𝛼

𝑛
𝑛 preserves the supercompactness of 𝜅𝑛−1. Thus, by Lemma 2.11,

𝑉 (P𝛼)𝑛 |= Refl(𝐸𝜇<𝜎𝑛−2
, 𝐸𝜇<𝜎𝑛). �

As 𝑧 is 𝑟⋆-fragile and 𝜋𝜇+,𝛼+1(𝑟
*) = 𝑟⋆ * ∅𝛼+1 = ⌈𝑟⋆⌉P𝛼+1 ∈ 𝐺𝛼+1,

Clause (f) of Building Block II implies that there exists (in 𝑉 [𝐺𝛼+1]) a club
subset of 𝜇 disjoint from 𝑇 . In particular, 𝑇 is nonstationary in 𝑉 [𝐺𝛼+1]
and thus nonstationary in 𝑉 [𝐺]. This contradicts the very choice of 𝑇 . The
result follows from the above discussion and the previous claim. �

We are now ready to derive the Main Theorem.

Theorem 8.9. Suppose that there exist infinitely many supercompact car-
dinals. Then there exists a forcing extension where all of the following hold:

(1) 2ℵ𝑛 = ℵ𝑛+1 for all 𝑛 < 𝜔;
(2) 2ℵ𝜔 = ℵ𝜔+2;
(3) every stationary subset of ℵ𝜔+1 reflects.

Proof. Using Corollary 8.3, we may assume that all the blanket assumptions
of Setup 8 are met. Specifically:

∙ �⃗� = ⟨𝜅𝑛 | 𝑛 < 𝜔⟩ is an increasing sequence of supercompact cardinals
that are indestructible under 𝜅𝑛-directed-closed notions of forcing
that preserve the GCH;

∙ 𝜅 := sup𝑛<𝜔 𝜅𝑛, 𝜇 := 𝜅+ and 𝜆 := 𝜅++;
∙ GCH holds.

Now, appeal to Theorem 8.8. �

64Recall Convention 7.1.
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